Startseite Weyl 𝑛-algebras and the Swiss cheese operad
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Weyl 𝑛-algebras and the Swiss cheese operad

  • Nikita Markarian EMAIL logo
Veröffentlicht/Copyright: 2. Februar 2021

Abstract

We apply Weyl 𝑛-algebras to prove formality theorems for higher Hochschild cohomology. We present two approaches: via propagators and via the factorization complex. It is shown that the second approach is equivalent to the first one taken with a new family of propagators we introduce.

MSC 2010: 18D50; 16E40; 55N35

Funding statement: The study has been funded within the framework of the HSE University Basic Research Program and the Russian Academic Excellence Project “5-100”.

Acknowledgements

I am grateful to D. Calaque, V. Dotsenko, B. Feigin, A. Khoroshkin, S. Merkulov, B. Shoikhet, D. Tamarkin and A. Voronov for fruitful discussions. I thank the referee for useful recommendations and for pointing out many relevant references.

  1. Communicated by: Frederick R. Cohen

References

[1] S. Axelrod and I. M. Singer, Chern–Simons perturbation theory, Proceedings of the 20th International Conference on Differential Geometric Methods in Theoretical Physics. Vol. 1, 2 (New York 1991), World Scientific, River Edge (1992), 3–45. 10.4310/jdg/1214454681Suche in Google Scholar

[2] D. Ayala, J. Francis and H. L. Tanaka, Factorization homology of stratified spaces, Selecta Math. (N. S.) 23 (2017), no. 1, 293–362. 10.1007/s00029-016-0242-1Suche in Google Scholar

[3] C. Berger, Combinatorial models for real configuration spaces and En-operads, Operads: Proceedings of Renaissance Conferences (Hartford/Luminy 1995), Contemp. Math. 202, American Mathematical Society, Providence (1997), 37–52. 10.1090/conm/202/02582Suche in Google Scholar

[4] S. Chmutov, S. Duzhin and J. Mostovoy, Introduction to Vassiliev Knot Invariants, Cambridge University, Cambridge, 2012. 10.1017/CBO9781139107846Suche in Google Scholar

[5] J. Francis, The tangent complex and Hochschild cohomology of En-rings, Compos. Math. 149 (2013), no. 3, 430–480. 10.1112/S0010437X12000140Suche in Google Scholar

[6] M. Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. (2) 78 (1963), 267–288. 10.2307/1970343Suche in Google Scholar

[7] E. Getzler and J. D. S. Jones, Operads, homotopy algebra and iterated integrals for double loop spaces, preprint (1994), https://arxiv.org/abs/hep-th/9403055. Suche in Google Scholar

[8] G. Ginot, Notes on factorization algebras, factorization homology and applications, Mathematical Aspects of Quantum Field Theories, Math. Phys. Stud., Springer, Cham (2015), 429–552. 10.1007/978-3-319-09949-1_13Suche in Google Scholar

[9] G. Ginot, T. Tradler and M. Zeinalian, Higher Hochschild cohomology, Brane topology and centralizers of En-algebra maps, preprint (2012), https://arxiv.org/abs/1205.7056. Suche in Google Scholar

[10] G. Ginot, T. Tradler and M. Zeinalian, Higher Hochschild homology, topological chiral homology and factorization algebras, Comm. Math. Phys. 326 (2014), no. 3, 635–686. 10.1007/s00220-014-1889-0Suche in Google Scholar

[11] V. Ginzburg and M. Kapranov, Koszul duality for operads, Duke Math. J. 76 (1994), no. 1, 203–272. 10.1215/S0012-7094-94-07608-4Suche in Google Scholar

[12] E. Hoefel, M. Livernet and A. Quesney, On the deformation complex of homotopy affine actions, Adv. Math. 358 (2019), Article ID 106857. 10.1016/j.aim.2019.106857Suche in Google Scholar

[13] R. M. Kaufmann, Moduli space actions on the Hochschild co-chains of a Frobenius algebra. II. Correlators, J. Noncommut. Geom. 2 (2008), no. 3, 283–332. 10.4171/JNCG/22Suche in Google Scholar

[14] R. M. Kaufmann, Open/closed string topology and moduli space actions via open/closed Hochschild actions, SIGMA Symmetry Integrability Geom. Methods Appl. 6 (2010), Paper No. 036. 10.3842/SIGMA.2010.036Suche in Google Scholar

[15] M. Kontsevich, Operads and motives in deformation quantization, Lett. Math. Phys. 48 (1999), 35–72. 10.1023/A:1007555725247Suche in Google Scholar

[16] M. Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), no. 3, 157–216. 10.1023/B:MATH.0000027508.00421.bfSuche in Google Scholar

[17] M. Kontsevich and Y. Soibelman, Deformations of algebras over operads and the Deligne conjecture, ConfĂ©rence MoshĂ© Flato 1999, Vol. I, Math. Phys. Stud. 21, Kluwer Academic, Dordrecht (2000), 255–307. Suche in Google Scholar

[18] J.-L. Loday, Cyclic Homology, 2nd ed., Grundlehren Math. Wiss. 301, Springer, Berlin, 1998. 10.1007/978-3-662-11389-9Suche in Google Scholar

[19] J. Lurie, Higher algebra, preprint (2017), http://www.math.harvard.edu/~lurie/papers/HigherAlgebra.pdf. Suche in Google Scholar

[20] N. Markarian, Weyl 𝑛-algebras and the Kontsevich integral of the unknot, J. Knot Theory Ramifications 25 (2016), no. 12, Article ID 1642008. 10.1142/S0218216516420086Suche in Google Scholar

[21] N. Markarian, Weyl 𝑛-algebras, Comm. Math. Phys. 350 (2017), no. 2, 421–442. 10.1007/s00220-017-2835-8Suche in Google Scholar

[22] N. Markarian and H. L. Tanaka, Factorization homology in 3-dimensional topology, Mathematical Aspects of Quantum Field Theories, Math. Phys. Stud., Springer, Cham (2015), 213–231. 10.1007/978-3-319-09949-1_7Suche in Google Scholar

[23] M. Markl, A compactification of the real configuration space as an operadic completion, J. Algebra 215 (1999), no. 1, 185–204. 10.1006/jabr.1998.7709Suche in Google Scholar

[24] C. A. Rossi and T. Willwacher, P. Etingof’s conjecture about Drinfeld associators, preprint (2014), https://arxiv.org/abs/1404.2047. Suche in Google Scholar

[25] P. Salvatore, Configuration spaces with summable labels, Cohomological Methods in Homotopy Theory (Bellaterra 1998), Progr. Math. 196, BirkhĂ€user, Basel (2001), 375–395. 10.1007/978-3-0348-8312-2_23Suche in Google Scholar

[26] P. Salvatore and N. Wahl, Framed discs operads and Batalin–Vilkovisky algebras, Q. J. Math. 54 (2003), no. 2, 213–231. 10.1093/qmath/hag012Suche in Google Scholar

[27] J. Thomas, Kontsevich’s Swiss cheese conjecture, Geom. Topol. 20 (2016), no. 1, 1–48. 10.2140/gt.2016.20.1Suche in Google Scholar

[28] A. A. Voronov, The Swiss-cheese operad, Homotopy Invariant Algebraic Structures (Baltimore 1998), Contemp. Math. 239, American Mathematical Society, Providence (1999), 365–373. 10.1090/conm/239/03610Suche in Google Scholar

Received: 2020-06-17
Revised: 2020-11-17
Published Online: 2021-02-02
Published in Print: 2021-03-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 12.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2020-0158/html
Button zum nach oben scrollen