Startseite Weighted boundedness of multilinear Calderón commutators
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Weighted boundedness of multilinear Calderón commutators

  • Yanping Chen und Xueting Han EMAIL logo
Veröffentlicht/Copyright: 21. Januar 2021

Abstract

The main result of this paper is to give that if bLip(n), hjBMO(n), j=1,,k, k+ and wAp, 1<p<, then the multilinear Calderón commutators TΩ,b,h with variable kernels are bounded on Lp(w). In addition, the authors extend the above result to the Morrey space.

MSC 2010: 42B20; 42B25

Communicated by Christopher D. Sogge


Award Identifier / Grant number: 11871096

Award Identifier / Grant number: 11471033

Funding statement: The project was in part supported by NSF of China (No. 11871096, No. 11471033).

Acknowledgements

The authors would like to express their deep gratitude to the referee for giving many valuable suggestions, which greatly improved the exposition of the paper.

References

[1] J. Álvarez, R. J. Bagby, D. S. Kurtz and C. Pérez, Weighted estimates for commutators of linear operators, Studia Math. 104 (1993), no. 2, 195–209. 10.4064/sm-104-2-195-209Suche in Google Scholar

[2] M. Bramanti and M. C. Cerutti, Wp1,2 solvability for the Cauchy–Dirichlet problem for parabolic equations with VMO coefficients, Comm. Partial Differential Equations 18 (1993), no. 9–10, 1735–1763. 10.1080/03605309308820991Suche in Google Scholar

[3] A.-P. Calderón, Commutators of singular integral operators, Proc. Natl. Acad. Sci. USA 53 (1965), 1092–1099. 10.1073/pnas.53.5.1092Suche in Google Scholar PubMed PubMed Central

[4] A.-P. Calderón, Commutators, singular integrals on Lipschitz curves and applications, Proceedings of the International Congress of Mathematicians (Helsinki 1978), Academia Scientiarum Fennica, Helsinki (1980), 85–96. Suche in Google Scholar

[5] A. P. Calderón and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85–139. 10.1007/978-94-009-1045-4_3Suche in Google Scholar

[6] A. P. Calderón and A. Zygmund, On a problem of Mihlin, Trans. Amer. Math. Soc. 78 (1955), 209–224. 10.1007/978-94-009-1045-4_7Suche in Google Scholar

[7] A. P. Calderón and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289–309. 10.1090/pspum/010Suche in Google Scholar

[8] A.-P. Calderón and A. Zygmund, Singular integral operators and differential equations, Amer. J. Math. 79 (1957), 901–921. 10.1007/978-94-009-1045-4_15Suche in Google Scholar

[9] Y. Chen and Y. Ding, L2 boundedness for commutator of rough singular integral with variable kernel, Rev. Mat. Iberoam. 24 (2008), no. 2, 531–547. 10.4171/RMI/545Suche in Google Scholar

[10] Y. Chen, Y. Ding and R. Li, L2 boundedness for maximal commutators with rough variable kernels, Rev. Mat. Iberoam. 27 (2011), no. 2, 361–391. 10.4171/RMI/640Suche in Google Scholar

[11] Y. Chen and L. Wang, L2(n) boundedness for Calderón commutator with rough variable kernel, Front. Math. China 13 (2018), no. 5, 1013–1031. 10.1007/s11464-018-0718-8Suche in Google Scholar

[12] Y. Chen and K. Zhu, Weighted norm inequality for the singular integral with variable kernel and fractional differentiation, J. Math. Anal. Appl. 423 (2015), no. 2, 1610–1629. 10.1016/j.jmaa.2014.10.074Suche in Google Scholar

[13] F. Chiarenza, M. Frasca and P. Longo, Interior W2,p estimates for nondivergence elliptic equations with discontinuous coefficients, Ric. Mat. 40 (1991), no. 1, 149–168. Suche in Google Scholar

[14] G. Di Fazio and M. A. Ragusa, Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients, J. Funct. Anal. 112 (1993), no. 2, 241–256. 10.1006/jfan.1993.1032Suche in Google Scholar

[15] J. Duoandikoetxea, Fourier Analysis, Grad. Stud. Mathe. 29, American Mathematical Society, Providence, 2001. Suche in Google Scholar

[16] L. Grafakos, Modern Fourier Analysis, 3rd ed., Grad. Texts in Math. 250, Springer, New York, 2014. 10.1007/978-1-4939-1230-8Suche in Google Scholar

[17] S. Hofmann, Weighted inequalities for commutators of rough singular integrals, Indiana Univ. Math. J. 39 (1990), no. 4, 1275–1304. 10.1512/iumj.1990.39.39057Suche in Google Scholar

[18] C. B. Morrey, Jr., On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), no. 1, 126–166. 10.1090/S0002-9947-1938-1501936-8Suche in Google Scholar

[19] D. K. Palagachev and L. G. Softova, Singular integral operators, Morrey spaces and fine regularity of solutions to PDE’s, Potential Anal. 20 (2004), no. 3, 237–263. 10.1023/B:POTA.0000010664.71807.f6Suche in Google Scholar

[20] C. Pérez, Sharp estimates for commutators of singular integrals via iterations of the Hardy–Littlewood maximal function, J. Fourier Anal. Appl. 3 (1997), no. 6, 743–756. 10.1007/BF02648265Suche in Google Scholar

[21] C. Pérez and R. Trujillo-González, Sharp weighted estimates for multilinear commutators, J. Lond. Math. Soc. (2) 65 (2002), no. 3, 672–692. 10.1112/S0024610702003174Suche in Google Scholar

[22] S. L. Sobolev, On a theorem of functional analysis, Mat. Sb. 4 (1938), 471–497. 10.1090/trans2/034/02Suche in Google Scholar

Received: 2020-08-14
Revised: 2020-12-29
Published Online: 2021-01-21
Published in Print: 2021-03-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2020-0223/html?lang=de
Button zum nach oben scrollen