Startseite On a Lévy process pinned at random time
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On a Lévy process pinned at random time

  • Mohamed Erraoui , Astrid Hilbert und Mohammed Louriki EMAIL logo
Veröffentlicht/Copyright: 9. Dezember 2020

Abstract

In this paper, our first goal is to rigorously define a Lévy process pinned at random time. Our second task is to establish the Markov property with respect to its completed natural filtration and thus with respect to the usual augmentation of the latter. The resulting conclusion is the right-continuity of completed natural filtration. Certain examples of such process are considered.

Funding source: Erasmus+

Award Identifier / Grant number: 2018-1-SE01-KA107-038889

Funding statement: The third author gratefully acknowledges financial support by an Erasmus+ International Credit Mobility exchange project coordinated by Linnaeus University.

Acknowledgements

The authors would like to express particular thanks to the anonymous referee for the constructive comments that greatly improved the manuscript, especially Examples 3.1 (ii) which concerns drifted Brownian motion. We also thank Hans-Jürgen Engelbert for helpful suggestions. This article has been finalized during a staff mobility of the second author at Cadi Ayyad University within this project.

  1. Communicated by: Maria Gordina

References

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York, 1992. Suche in Google Scholar

[2] L. C. Andrews, Special Functions of Mathematics for Engineers, 2nd ed., Oxford University, Oxford, 1998. 10.1093/oso/9780198565581.001.0001Suche in Google Scholar

[3] O. E. Barndorff-Nielsen, Processes of normal inverse Gaussian type, Finance Stoch. 2 (1998), no. 1, 41–68. 10.1007/s007800050032Suche in Google Scholar

[4] M. L. Bedini, R. Buckdahn and H. J. Engelbert, Brownian bridges on random intervals, Theory Probab. Appl. 61 (2017), 15–39. 10.1137/S0040585X97T988022Suche in Google Scholar

[5] J. Bertoin, Lévy Processes, Cambridge Tracts in Math. 121, Cambridge University, Cambridge, 1996. Suche in Google Scholar

[6] R. M. Blumenthal and R. K. Getoor, Markov Processes and Potential Theory, Academic Press, New York, 1968. Suche in Google Scholar

[7] L. Chaumont and G. Uribe-Bravo, Markovian bridges: Weak continuity and pathwise constructions, Ann. Probab. 39 (2011), 609–647. 10.1214/10-AOP562Suche in Google Scholar

[8] M. Emery and M. Yor, A parallel between Brownian bridges and gamma bridges, Publ. RIMS Kyoto Univ. 40 (2004), 669–688. 10.2977/prims/1145475488Suche in Google Scholar

[9] M. Erraoui, A. Hilbert and M. Louriki, Bridges with random length: Gamma case, J. Theoret. Probab 33 (2020), 931–953. 10.1007/s10959-019-00955-4Suche in Google Scholar

[10] M. Erraoui and M. Louriki, Bridges with random length: Gaussian-Markovian case, Markov Process. Related Fields. 4 (2018), 669–693. Suche in Google Scholar

[11] J. E. Figueroa-López and C. Houdré, Small-time expansions for the transition distributions of Lévy processes, Stochastic Process. Appl. 11 (2009), 3862–3889. 10.1016/j.spa.2009.09.002Suche in Google Scholar

[12] P. J. Fitzsimmons and R. K. Getoor, Occupation time distributions for Lévy bridges and excursions, Stochastic Process. Appl. 58 (1995), 73–89. 10.1016/0304-4149(95)00013-WSuche in Google Scholar

[13] P. J. Fitzsimmons, J. Pitman and M. Yor, Markovian bridges: Construction, Palm interpretation, and splicing, Semin. Stoch. Proc. 33 (1993), 102–133. 10.1007/978-1-4612-0339-1_5Suche in Google Scholar

[14] D. Gasbarra, T. Sottinen and E. Valkeila, Gaussian Bridges, Stochastic Analysis and Applications, Abel Symp. 2, Springer, Berlin (2007), 361–382. 10.1007/978-3-540-70847-6_15Suche in Google Scholar

[15] R. K. Getoor and M. J. Sharpe, Excursions of dual processes, Adv. Math. 45 (1982), 259–309. 10.1016/S0001-8708(82)80006-6Suche in Google Scholar

[16] P. Hartman and A. Wintner, On the infinitesimal generators of integral convolutions, Amer. J. Math. 64 (1942), 273–298. 10.2307/2371683Suche in Google Scholar

[17] E. Hoyle, L. P. Hughston and A. Macrina, Lévy random bridges and the modelling of financial information, Stochastic Process. Appl. 121 (2011), 856–884. 10.1016/j.spa.2010.12.003Suche in Google Scholar

[18] Y. Ishikawa, Asymptotic behavior of the transition density for jump type processes in small time, Tohoku Math. J. (2) 46 (1994), no. 4, 443–456. 10.2748/tmj/1178225674Suche in Google Scholar

[19] J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes, 2nd ed., Springer, Berlin, 2003. 10.1007/978-3-662-05265-5Suche in Google Scholar

[20] M. Jeanblanc, M. Yor and M. Chesney, Mathematical Methods for Financial Markets, Springer, London, 2009. 10.1007/978-1-84628-737-4Suche in Google Scholar

[21] O. Kallenberg, Canonical representations and convergence criteria for processes with interchangeable increments, Z. Wahrscheinlichkeitstheorie Verw. Gebiete 27 (1973), 23–36. 10.1007/BF00736005Suche in Google Scholar

[22] O. Kallenberg, Splitting at backward times in regenerative sets, Ann. Probab. 9 (1981), no. 5, 781–799. 10.1214/aop/1176994308Suche in Google Scholar

[23] V. Knopova and R. L. Schilling, A note on the existence of transition probability densities of Lévy processes, Forum Math. 25 (2013), 125–149. 10.1515/form.2011.108Suche in Google Scholar

[24] V. N. Kolokoltsov, Semiclassical Analysis for Diffusions and Stochastic Processes, Lecture Notes in Math. 1724, Springer, Berlin, 2000. 10.1007/BFb0112488Suche in Google Scholar

[25] R. Léandre, Densité en temps petit d’un processus de sauts, Séminaire de Probabilités. XXI, Lecture Notes in Math. 1247, Springer, Berlin (1987), 81–99. 10.1007/BFb0077628Suche in Google Scholar

[26] P. Lévy, Sur certains processus stochastiques homogènes, Compos. Math. 7 (1939), 283–339. Suche in Google Scholar

[27] D. Madan, B. Roynette and M. Yor, An alternative expression for the BlackScholes formula in terms of Brownian first and last passage times, preprint (2008), https://hal.archives-ouvertes.fr/hal-00257403/en/. Suche in Google Scholar

[28] J. Pitman and M. Yor, Arcsine laws and interval partitions derived from a stable subordinator, Proc. Lond. Math. Soc. (3) 65 (1992), no. 2, 326–356. 10.1112/plms/s3-65.2.326Suche in Google Scholar

[29] Y. S. Rachev, S. T. Chung, D. M. Kim and M. L. Bianchi, The modified tempered stable distribution, GARCH models and option pricing, Probab. Math. Statist. 29 (2009), 91–117. Suche in Google Scholar

[30] J. Rosiński, Tempering stable processes, Stochastic Process. Appl. 117 (2007), no. 6, 677–707. 10.1016/j.spa.2006.10.003Suche in Google Scholar

[31] L. Rüschendorf and J. Woerner, Expansion of transition distributions of Lévy processes in small time, Bernoulli 8 (2002), no. 1, 81–96. Suche in Google Scholar

[32] T. H. Rydberg, The normal inverse Gaussian Lévy process: Simulation and approximation, Comm. Statist. Stoch. Model. 13 (1997), 887–910. 10.1080/15326349708807456Suche in Google Scholar

[33] K.-I. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge Stud. Adv. Math. 68, Cambridge University, Cambridge, 1999. Suche in Google Scholar

[34] W. Schenk, Über das asymptotische Verhalten der Übergangswahrscheinlichkeiten eines stochastischen Prozesses mit stationären und unabhängigen Zuwächsen, Wiss. Z. Techn. Univ. Dresden 24 (1975), no. 5, 945–947. Suche in Google Scholar

[35] M. Sharpe, Zeroes of infinitely divisible densities, Ann. Math. Statist. 40 (1969), 1503–1505. 10.1214/aoms/1177697525Suche in Google Scholar

[36] H. G. Tucker, Absolute continuity of infinitely divisible distributions, Pacific J. Math. 12 (1962), 1125–1129. 10.2140/pjm.1962.12.1125Suche in Google Scholar

[37] R. Wittmann, Natural densities of Markov transition probabilities, Probab. Theory Relat. Fields 73 (1986), no. 1, 1–10. 10.1007/BF01845990Suche in Google Scholar

Received: 2019-11-20
Revised: 2020-09-14
Published Online: 2020-12-09
Published in Print: 2021-03-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2019-0324/html?lang=de
Button zum nach oben scrollen