Startseite Mathematik Classification of indecomposable involutive set-theoretic solutions to the Yang–Baxter equation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Classification of indecomposable involutive set-theoretic solutions to the Yang–Baxter equation

  • Wolfgang Rump EMAIL logo
Veröffentlicht/Copyright: 22. Februar 2020

Abstract

Using the theory of cycle sets and braces, non-degenerate indecomposable involutive set-theoretic solutions to the Yang–Baxter equation are classified in terms of their universal coverings and their fundamental group. The universal coverings are characterized as braces with an adjoint orbit generating the additive group. Using this description, all coverings of non-degenerate indecomposable cycle sets are classified. The method is illustrated by examples.

MSC 2010: 08A05; 16T25; 81R50

Dedicated to B. V. M.



Communicated by Manfred Droste


References

[1] I. Angiono, C. Galindo and L. Vendramin, Hopf braces and Yang–Baxter operators, Proc. Amer. Math. Soc. 145 (2017), no. 5, 1981–1995. 10.1090/proc/13395Suche in Google Scholar

[2] D. Bachiller, F. Cedó and E. Jespers, Solutions of the Yang–Baxter equation associated with a left brace, J. Algebra 463 (2016), 80–102. 10.1016/j.jalgebra.2016.05.024Suche in Google Scholar

[3] R. J. Baxter, Partition function of the eight-vertex lattice model, Ann. Physics 70 (1972), 193–228. 10.1142/9789812798336_0003Suche in Google Scholar

[4] N. Ben David and Y. Ginosar, On groups of I-type and involutive Yang–Baxter groups, J. Algebra 458 (2016), 197–206. 10.1016/j.jalgebra.2016.03.025Suche in Google Scholar

[5] J. S. Carter, M. Elhamdadi and M. Saito, Homology theory for the set-theoretic Yang–Baxter equation and knot invariants from generalizations of quandles, Fund. Math. 184 (2004), 31–54. 10.4064/fm184-0-3Suche in Google Scholar

[6] M. Castelli, F. Catino and G. Pinto, Indecomposable involutive set-theoretic solutions of the Yang–Baxter equation, J. Pure Appl. Algebra 223 (2019), no. 10, 4477–4493. 10.1016/j.jpaa.2019.01.017Suche in Google Scholar

[7] F. Catino, I. Colazzo and P. Stefanelli, On regular subgroups of the affine group, Bull. Aust. Math. Soc. 91 (2015), no. 1, 76–85. 10.1017/S000497271400077XSuche in Google Scholar

[8] F. Catino, I. Colazzo and P. Stefanelli, Regular subgroups of the affine group and asymmetric product of radical braces, J. Algebra 455 (2016), 164–182. 10.1016/j.jalgebra.2016.01.038Suche in Google Scholar

[9] F. Catino and R. Rizzo, Regular subgroups of the affine group and radical circle algebras, Bull. Aust. Math. Soc. 79 (2009), no. 1, 103–107. 10.1017/S0004972708001068Suche in Google Scholar

[10] F. Cedó, E. Jespers and A. del Río, Involutive Yang–Baxter groups, Trans. Amer. Math. Soc. 362 (2010), no. 5, 2541–2558. 10.1090/S0002-9947-09-04927-7Suche in Google Scholar

[11] F. Cedó, E. Jespers and J. Okniński, Retractability of set theoretic solutions of the Yang–Baxter equation, Adv. Math. 224 (2010), no. 6, 2472–2484. 10.1016/j.aim.2010.02.001Suche in Google Scholar

[12] L. N. Childs, Fixed-point free endomorphisms and Hopf Galois structures, Proc. Amer. Math. Soc. 141 (2013), no. 4, 1255–1265. 10.1090/S0002-9939-2012-11418-2Suche in Google Scholar

[13] F. Chouraqui and E. Godelle, Finite quotients of groups of I-type, Adv. Math. 258 (2014), 46–68. 10.1016/j.aim.2014.02.009Suche in Google Scholar

[14] M. R. Darnel, Theory of Lattice-Ordered Groups, Monogr. Textb. Pure Appl. Math. 187, Marcel Dekker, New York, 1995. Suche in Google Scholar

[15] P. Dehornoy, Set-theoretic solutions of the Yang–Baxter equation, RC-calculus, and Garside germs, Adv. Math. 282 (2015), 93–127. 10.1016/j.aim.2015.05.008Suche in Google Scholar

[16] V. G. Drinfel’d, On some unsolved problems in quantum group theory, Quantum Groups (Leningrad 1990), Lecture Notes in Math. 1510, Springer, Berlin (1992), 1–8. 10.1007/BFb0101175Suche in Google Scholar

[17] M. Eisermann, Quandle coverings and their Galois correspondence, Fund. Math. 225 (2014), no. 1, 103–168. 10.4064/fm225-1-7Suche in Google Scholar

[18] P. Etingof and M. Graña, On rack cohomology, J. Pure Appl. Algebra 177 (2003), no. 1, 49–59. 10.1016/S0022-4049(02)00159-7Suche in Google Scholar

[19] P. Etingof, T. Schedler and A. Soloviev, Set-theoretical solutions to the quantum Yang–Baxter equation, Duke Math. J. 100 (1999), no. 2, 169–209. 10.1215/S0012-7094-99-10007-XSuche in Google Scholar

[20] P. Etingof, A. Soloviev and R. Guralnick, Indecomposable set-theoretical solutions to the quantum Yang–Baxter equation on a set with a prime number of elements, J. Algebra 242 (2001), no. 2, 709–719. 10.1006/jabr.2001.8842Suche in Google Scholar

[21] M. A. Farinati and J. García Galofre, A differential bialgebra associated to a set theoretical solution of the Yang–Baxter equation, J. Pure Appl. Algebra 220 (2016), no. 10, 3454–3475. 10.1016/j.jpaa.2016.04.010Suche in Google Scholar

[22] S. C. Featherstonhaugh, A. Caranti and L. N. Childs, Abelian Hopf Galois structures on prime-power Galois field extensions, Trans. Amer. Math. Soc. 364 (2012), no. 7, 3675–3684. 10.1090/S0002-9947-2012-05503-6Suche in Google Scholar

[23] T. Gateva-Ivanova, Noetherian properties of skew polynomial rings with binomial relations, Trans. Amer. Math. Soc. 343 (1994), no. 1, 203–219. 10.1090/S0002-9947-1994-1173854-3Suche in Google Scholar

[24] T. Gateva-Ivanova, Skew polynomial rings with binomial relations, J. Algebra 185 (1996), no. 3, 710–753. 10.1006/jabr.1996.0348Suche in Google Scholar

[25] T. Gateva-Ivanova, Quadratic algebras, Yang–Baxter equation, and Artin–Schelter regularity, Adv. Math. 230 (2012), no. 4–6, 2152–2175. 10.1016/j.aim.2012.04.016Suche in Google Scholar

[26] T. Gateva-Ivanova and M. Van den Bergh, Semigroups of I-type, J. Algebra 206 (1998), no. 1, 97–112. 10.1006/jabr.1997.7399Suche in Google Scholar

[27] L. Guarnieri and L. Vendramin, Skew braces and the Yang–Baxter equation, Math. Comp. 86 (2017), no. 307, 2519–2534. 10.1090/mcom/3161Suche in Google Scholar

[28] P. Hall, On the Sylow systems of a soluble group, Proc. London Math. Soc. (2) 43 (1937), no. 4, 316–323. 10.1112/plms/s2-43.4.316Suche in Google Scholar

[29] N. Jacobson, Structure of Rings, Amer. Math. Soc. Colloq. Publ. 37, American Mathematical Society, Providence, 1964. Suche in Google Scholar

[30] E. Jespers and J. Okniński, Monoids and groups of I-type, Algebr. Represent. Theory 8 (2005), no. 5, 709–729. 10.1007/s10468-005-0342-7Suche in Google Scholar

[31] V. Lebed, Plactic monoids: A braided approach, preprint (2016), https://arxiv.org/abs/1612.05768. 10.1016/j.jalgebra.2020.08.010Suche in Google Scholar

[32] V. Lebed, Cohomology of idempotent braidings with applications to factorizable monoids, Internat. J. Algebra Comput. 27 (2017), no. 4, 421–454. 10.1142/S0218196717500229Suche in Google Scholar

[33] V. Lebed and L. Vendramin, Homology of left non-degenerate set-theoretic solutions to the Yang–Baxter equation, Adv. Math. 304 (2017), 1219–1261. 10.1016/j.aim.2016.09.024Suche in Google Scholar

[34] J.-H. Lu, M. Yan and Y.-C. Zhu, On the set-theoretical Yang–Baxter equation, Duke Math. J. 104 (2000), no. 1, 1–18. 10.1215/S0012-7094-00-10411-5Suche in Google Scholar

[35] J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings. With the Cooperation of L. W. Small, revised ed., Grad. Texts in Math. 30, American Mathematical Society, Providence, 2001. 10.1090/gsm/030/02Suche in Google Scholar

[36] D. J. S. Robinson, A Course in the Theory of Groups, 2nd ed., Grad. Texts in Math. 80, Springer, New York, 1996. 10.1007/978-1-4419-8594-1Suche in Google Scholar

[37] W. Rump, A decomposition theorem for square-free unitary solutions of the quantum Yang–Baxter equation, Adv. Math. 193 (2005), no. 1, 40–55. 10.1016/j.aim.2004.03.019Suche in Google Scholar

[38] W. Rump, Braces, radical rings, and the quantum Yang–Baxter equation, J. Algebra 307 (2007), no. 1, 153–170. 10.1016/j.jalgebra.2006.03.040Suche in Google Scholar

[39] W. Rump, Classification of cyclic braces, J. Pure Appl. Algebra 209 (2007), no. 3, 671–685. 10.1016/j.jpaa.2006.07.001Suche in Google Scholar

[40] W. Rump, Right l-groups, geometric Garside groups, and solutions of the quantum Yang–Baxter equation, J. Algebra 439 (2015), 470–510. 10.1016/j.jalgebra.2015.04.045Suche in Google Scholar

[41] W. Rump, A covering theory for non-involutive set-theoretic solutions to the Yang–Baxter equation, J. Algebra 520 (2019), 136–170. 10.1016/j.jalgebra.2018.11.007Suche in Google Scholar

[42] W. Rump, Classification of cyclic braces, II, Trans. Amer. Math. Soc. 372 (2019), no. 1, 305–328. 10.1090/tran/7569Suche in Google Scholar

[43] W. Rump, Construction of finite braces, Ann. Comb. 23 (2019), no. 2, 391–416. 10.1007/s00026-019-00430-1Suche in Google Scholar

[44] A. Smoktunowicz and A. Smoktunowicz, Set-theoretic solutions of the Yang–Baxter equation and new classes of R-matrices, Linear Algebra Appl. 546 (2018), 86–114. 10.1016/j.laa.2018.02.001Suche in Google Scholar

[45] J. Tate and M. van den Bergh, Homological properties of Sklyanin algebras, Invent. Math. 124 (1996), no. 1–3, 619–647. 10.1007/s002220050065Suche in Google Scholar

[46] L. Vendramin, Extensions of set-theoretic solutions of the Yang–Baxter equation and a conjecture of Gateva-Ivanova, J. Pure Appl. Algebra 220 (2016), no. 5, 2064–2076. 10.1016/j.jpaa.2015.10.018Suche in Google Scholar

[47] C. N. Yang, Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Phys. Rev. Lett. 19 (1967), 1312–1315. 10.1103/PhysRevLett.19.1312Suche in Google Scholar

Received: 2019-10-04
Revised: 2020-01-27
Published Online: 2020-02-22
Published in Print: 2020-07-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2019-0274/pdf
Button zum nach oben scrollen