Abstract
In this article, we revisit Rankin–Selberg integrals established by Jacquet, Piatetski-Shapiro and Shalika. We prove the equality of Rankin–Selberg local factors defined with Schwartz–Bruhat functions and the factors attached to good sections, introduced by Piatetski-Shapiro and Rallis. Moreover, we propose a notion of exceptional poles in the framework of good sections. For cases of Rankin–Selberg, Asai and exterior square L-functions, the exceptional poles are consistent with well-known exceptional poles which characterize certain distinguished representations.
Acknowledgements
This paper owes its existence to a question raised by James Cogdell, who asked me whether Eisenstein series used to construct the integral representation of symmetric square L-functions could be adapted to the setting of Rankin–Selberg L-functions for
References
[1]
I. N. Bernstein and A. V. Zelevinsky,
Induced representations of reductive
[2]
J. N. Bernstein,
P-invariant distributions on
[3] J. N. Bernstein and E. Lapid, On the meromorphic continuation of Eisenstein series, preprint (2019), https://arxiv.org/pdf/1911.02342. 10.1090/jams/1020Suche in Google Scholar
[4] D. Bump, The Rankin–Selberg method: An introduction and survey, Automorphic Representations, L-Functions and Applications: Progress and Prospects, Ohio State Univ. Math. Res. Inst. Publ. 11, De Gruyter, Berlin (2005), 41–73. 10.1515/9783110892703.41Suche in Google Scholar
[5]
D. Bump and S. Friedberg,
The exterior square automorphic L-functions on
[6]
D. Bump and D. Ginzburg,
Symmetric square L-functions on
[7]
C. J. Bushnell and G. Henniart,
The Local Langlands Conjecture for
[8] S.-Y. Chen, Gamma factors for the Asai representation, preprint (2019), https://arxiv.org/abs/arXiv:1904.07844. 10.29007/br13Suche in Google Scholar
[9]
J. W. Cogdell,
L-functions and converse theorems for
[10]
J. W. Cogdell and I. I. Piatetski-Shapiro,
Derivatives and L-functions for
[11] Y. Z. Flicker, On zeroes of the twisted tensor L-function, Math. Ann. 297 (1993), no. 2, 199–219. 10.1007/BF01459497Suche in Google Scholar
[12]
I. M. Gel’fand and D. A. Každan,
Representations of the group
[13] R. Godement and H. Jacquet, Zeta Functions of Simple Algebras, Lecture Notes in Math. 260, Springer, Berlin, 1972. 10.1007/BFb0070263Suche in Google Scholar
[14] M. Harris, S. S. Kudla and W. J. Sweet, Theta dichotomy for unitary groups, J. Amer. Math. Soc. 9 (1996), no. 4, 941–1004. 10.1090/S0894-0347-96-00198-1Suche in Google Scholar
[15] T. Ikeda, On the location of poles of the triple L-functions, Compos. Math. 83 (1992), no. 2, 187–237. Suche in Google Scholar
[16]
T. Ishii,
Archimedean zeta integrals for the exterior square L-functions on
[17]
H. Jacquet,
Automorphic Forms on
[18] H. Jacquet, I. I. Piatetskii-Shapiro and J. A. Shalika, Rankin–Selberg convolutions, Amer. J. Math. 105 (1983), no. 2, 367–464. 10.2307/2374264Suche in Google Scholar
[19] H. Jacquet and J. Shalika, On Euler products and the classification of automorphic representations. I, Amer. J. Math. 103 (1981), no. 3, 499–558. 10.2307/2374103Suche in Google Scholar
[20] H. Jacquet and J. Shalika, Exterior square L-functions, Automorphic Forms, Shimura Varieties, and L-Functions. Vol. II (Ann Arbor 1988), Perspect. Math. 11, Academic Press, Boston (1990), 143–226. Suche in Google Scholar
[21]
D. Jiang,
Degree 16 standard L-function of
[22]
Y. Jo,
Factorization of the local exterior square L-function of
[23]
Y. Jo,
Derivatives and exceptional poles of the local exterior square L-function for
[24] A. C. Kable, The tensor product of exceptional representations on the general linear group, Ann. Sci. Éc. Norm. Supér. (4) 34 (2001), no. 5, 741–769. 10.1016/S0012-9593(01)01075-8Suche in Google Scholar
[25] E. Kaplan, On the gcd of local Rankin-Selberg integrals for even orthogonal groups, Compos. Math. 149 (2013), no. 4, 587–636. 10.1112/S0010437X12000644Suche in Google Scholar
[26] D. A. Kazhdan and S. J. Patterson, Metaplectic forms, Inst. Hautes Études Sci. Publ. Math. (1984), no. 59, 35–142. 10.1007/BF02698770Suche in Google Scholar
[27] N. Matringe, Conjectures about distinction and local Asai L-functions, Int. Math. Res. Not. IMRN 2009 (2009), no. 9, 1699–1741. 10.1093/imrn/rnp002Suche in Google Scholar
[28] N. Matringe, Distinguished representations and exceptional poles of the Asai-L-function, Manuscripta Math. 131 (2010), no. 3–4, 415–426. 10.1007/s00229-009-0327-7Suche in Google Scholar
[29] N. Matringe, Linear and Shalika local periods for the mirabolic group, and some consequences, J. Number Theory 138 (2014), 1–19. 10.1016/j.jnt.2013.11.012Suche in Google Scholar
[30] N. Matringe, On the local Bump–Friedberg L-function, J. Reine Angew. Math. 709 (2015), 119–170. 10.1515/crelle-2013-0083Suche in Google Scholar
[31] C. Mœglin and J.-L. Waldspurger, Spectral Decomposition and Eisenstein Series, Cambridge Tracts in Math. 113, Cambridge University, Cambridge, 1995. 10.1017/CBO9780511470905Suche in Google Scholar
[32]
G. Muić,
Some applications of degenerate Eisenstein series on
[33] O. Offen, On local root numbers and distinction, J. Reine Angew. Math. 652 (2011), 165–205. 10.1515/crelle.2011.017Suche in Google Scholar
[34]
I. Piatetski-Shapiro,
L-functions for
[35] I. Piatetski-Shapiro and S. Rallis, L-Functions for the Classical Groups, Lecture Notes in Math. 1254, Springer, Berlin, 1987. 10.1007/BFb0078126Suche in Google Scholar
[36] I. Piatetski-Shapiro and S. Rallis, Rankin triple L functions, Compos. Math. 64 (1987), no. 1, 31–115. 10.1007/BFb0078126Suche in Google Scholar
[37]
M. Rösner and R. Weissauer,
Exceptional poles of local spinor L-functions of
[38]
R. Schmidt and L. Tran,
Zeta integrals for
[39] F. Shahidi, A proof of langlands’ conjecture on plancherel measures; complementary series for p-adic groups, Ann. of Math. (2), 132 (1990), no. 2, 273–330. 10.2307/1971524Suche in Google Scholar
[40]
S. Takeda,
The twisted symmetric square L-function of
[41] S. Takeda, On a certain metaplectic Eisenstein series and the twisted symmetric square L-function, Math. Z. 281 (2015), no. 1–2, 103–157. 10.1007/s00209-015-1476-xSuche in Google Scholar
[42] J. Tate, Number theoretic background, Automorphic Forms, Representations and L-Functions (Corvallis 1977), Proc. Sympos. Pure Math. 33, American Mathematical Society, Providence (1979), 3–26. 10.1090/pspum/033.2/546607Suche in Google Scholar
[43] J.-L. Waldspurger, La formule de Plancherel pour les groupes p-adiques (d’après Harish-Chandra), J. Inst. Math. Jussieu 2 (2003), no. 2, 235–333. 10.1017/S1474748003000082Suche in Google Scholar
[44] S. Yamana, Local symmetric square L-factors of representations of general linear groups, Pacific J. Math. 286 (2017), no. 1, 215–256. 10.2140/pjm.2017.286.215Suche in Google Scholar
[45]
R. Ye and E. Zelingher,
Exterior square gamma factors for cuspidal representations of
[46]
A. V. Zelevinsky,
Induced representations of reductive
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Decomposition rank of approximately subhomogeneous C*-algebras
- Classification of indecomposable involutive set-theoretic solutions to the Yang–Baxter equation
- Degree bounds for modular covariants
- The Kobayashi–Royden metric on punctured spheres
- Boundedness of multi-parameter pseudo-differential operators on multi-parameter local Hardy spaces
- Artin L-functions of almost monomial Galois groups
- Unitary representations with Dirac cohomology: A finiteness result for complex Lie groups
- Weighted sum formulas of multiple t-values with even arguments
- Long time behavior of solutions to 3D generalized MHD equations
- Bilinear forms on non-homogeneous Sobolev spaces
- Weyl and Zariski chambers on projective surfaces
- Rankin–Selberg L-functions via good sections
- Archimedean domains of skew generalized power series
Artikel in diesem Heft
- Frontmatter
- Decomposition rank of approximately subhomogeneous C*-algebras
- Classification of indecomposable involutive set-theoretic solutions to the Yang–Baxter equation
- Degree bounds for modular covariants
- The Kobayashi–Royden metric on punctured spheres
- Boundedness of multi-parameter pseudo-differential operators on multi-parameter local Hardy spaces
- Artin L-functions of almost monomial Galois groups
- Unitary representations with Dirac cohomology: A finiteness result for complex Lie groups
- Weighted sum formulas of multiple t-values with even arguments
- Long time behavior of solutions to 3D generalized MHD equations
- Bilinear forms on non-homogeneous Sobolev spaces
- Weyl and Zariski chambers on projective surfaces
- Rankin–Selberg L-functions via good sections
- Archimedean domains of skew generalized power series