Startseite Rankin–Selberg L-functions via good sections
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Rankin–Selberg L-functions via good sections

  • Yeongseong Jo ORCID logo EMAIL logo
Veröffentlicht/Copyright: 9. Mai 2020

Abstract

In this article, we revisit Rankin–Selberg integrals established by Jacquet, Piatetski-Shapiro and Shalika. We prove the equality of Rankin–Selberg local factors defined with Schwartz–Bruhat functions and the factors attached to good sections, introduced by Piatetski-Shapiro and Rallis. Moreover, we propose a notion of exceptional poles in the framework of good sections. For cases of Rankin–Selberg, Asai and exterior square L-functions, the exceptional poles are consistent with well-known exceptional poles which characterize certain distinguished representations.


Communicated by Freydoon Shahidi


Acknowledgements

This paper owes its existence to a question raised by James Cogdell, who asked me whether Eisenstein series used to construct the integral representation of symmetric square L-functions could be adapted to the setting of Rankin–Selberg L-functions for GLn×GLn. I am very grateful to my advisor James Cogdell for this inspiration and for a lot of invaluable comments and suggestions over the years. I highly appreciate to Muthu Krishnamurthy for helpful discussions during the writing of this paper and a very careful reading of the first draft of this article, and for encouraging the publication of these results. I would like to thank the Department of Mathematics at the University of Iowa for various supports at numerous times. Finally, I would like to express my sincere gratitude to the referee for several valuable comments which improve exposition and organization of this paper, and for correcting many inaccuracies.

References

[1] I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive 𝔭-adic groups. I, Ann. Sci. Éc. Norm. Supér. (4) 10 (1977), no. 4, 441–472. 10.24033/asens.1333Suche in Google Scholar

[2] J. N. Bernstein, P-invariant distributions on GL(N) and the classification of unitary representations of GL(N) (non-Archimedean case), Lie Group Representations. II (College Park 1982/1983), Lecture Notes in Math. 1041, Springer, Berlin (1984), 50–102. 10.1007/BFb0073145Suche in Google Scholar

[3] J. N. Bernstein and E. Lapid, On the meromorphic continuation of Eisenstein series, preprint (2019), https://arxiv.org/pdf/1911.02342. 10.1090/jams/1020Suche in Google Scholar

[4] D. Bump, The Rankin–Selberg method: An introduction and survey, Automorphic Representations, L-Functions and Applications: Progress and Prospects, Ohio State Univ. Math. Res. Inst. Publ. 11, De Gruyter, Berlin (2005), 41–73. 10.1515/9783110892703.41Suche in Google Scholar

[5] D. Bump and S. Friedberg, The exterior square automorphic L-functions on GL(n), Festschrift in Honor of I. I. Piatetski–Shapiro on the Occasion of His Sixtieth Birthday. Part II (Ramat Aviv 1989), Israel Math. Conf. Proc. 3, Weizmann, Jerusalem (1990), 47–65. Suche in Google Scholar

[6] D. Bump and D. Ginzburg, Symmetric square L-functions on GL(r), Ann. of Math. (2) 136 (1992), no. 1, 137–205. 10.2307/2946548Suche in Google Scholar

[7] C. J. Bushnell and G. Henniart, The Local Langlands Conjecture for GL(2), Grundlehren Math. Wiss. 335, Springer, Berlin, 2006. 10.1007/3-540-31511-XSuche in Google Scholar

[8] S.-Y. Chen, Gamma factors for the Asai representation, preprint (2019), https://arxiv.org/abs/arXiv:1904.07844. 10.29007/br13Suche in Google Scholar

[9] J. W. Cogdell, L-functions and converse theorems for GLn, Automorphic Forms and Applications, IAS/Park City Math. Ser. 12, American Mathematical Society, Providence (2007), 97–177. Suche in Google Scholar

[10] J. W. Cogdell and I. I. Piatetski-Shapiro, Derivatives and L-functions for GLn, Representation Theory, Number Theory, and Invariant Theory, Progr. Math. 323, Birkhäuser/Springer, Cham (2017), 115–173. 10.1007/978-3-319-59728-7_5Suche in Google Scholar

[11] Y. Z. Flicker, On zeroes of the twisted tensor L-function, Math. Ann. 297 (1993), no. 2, 199–219. 10.1007/BF01459497Suche in Google Scholar

[12] I. M. Gel’fand and D. A. Každan, Representations of the group GL(n,K) where K is a local field, Funktsional. Anal. i Priložen. 6 (1972), no. 4, 73–74. Suche in Google Scholar

[13] R. Godement and H. Jacquet, Zeta Functions of Simple Algebras, Lecture Notes in Math. 260, Springer, Berlin, 1972. 10.1007/BFb0070263Suche in Google Scholar

[14] M. Harris, S. S. Kudla and W. J. Sweet, Theta dichotomy for unitary groups, J. Amer. Math. Soc. 9 (1996), no. 4, 941–1004. 10.1090/S0894-0347-96-00198-1Suche in Google Scholar

[15] T. Ikeda, On the location of poles of the triple L-functions, Compos. Math. 83 (1992), no. 2, 187–237. Suche in Google Scholar

[16] T. Ishii, Archimedean zeta integrals for the exterior square L-functions on GLn, J. Number Theory 186 (2018), 304–345. 10.1016/j.jnt.2017.10.007Suche in Google Scholar

[17] H. Jacquet, Automorphic Forms on GL(2). Part II, Lecture Notes in Math. 278, Springer, Berlin, 1972. 10.1007/BFb0058503Suche in Google Scholar

[18] H. Jacquet, I. I. Piatetskii-Shapiro and J. A. Shalika, Rankin–Selberg convolutions, Amer. J. Math. 105 (1983), no. 2, 367–464. 10.2307/2374264Suche in Google Scholar

[19] H. Jacquet and J. Shalika, On Euler products and the classification of automorphic representations. I, Amer. J. Math. 103 (1981), no. 3, 499–558. 10.2307/2374103Suche in Google Scholar

[20] H. Jacquet and J. Shalika, Exterior square L-functions, Automorphic Forms, Shimura Varieties, and L-Functions. Vol. II (Ann Arbor 1988), Perspect. Math. 11, Academic Press, Boston (1990), 143–226. Suche in Google Scholar

[21] D. Jiang, Degree 16 standard L-function of GSp(2)×GSp(2), Mem. Amer. Math. Soc. 123 (1996), no. 588, 1–196. Suche in Google Scholar

[22] Y. Jo, Factorization of the local exterior square L-function of GLm, Manuscripta Math. (2019), 10.1007/s00229-019-01140-x. 10.1007/s00229-019-01140-xSuche in Google Scholar

[23] Y. Jo, Derivatives and exceptional poles of the local exterior square L-function for GLm, Math. Z. 294 (2020), no. 3–4, 1687–1725. 10.1007/s00209-019-02327-4Suche in Google Scholar

[24] A. C. Kable, The tensor product of exceptional representations on the general linear group, Ann. Sci. Éc. Norm. Supér. (4) 34 (2001), no. 5, 741–769. 10.1016/S0012-9593(01)01075-8Suche in Google Scholar

[25] E. Kaplan, On the gcd of local Rankin-Selberg integrals for even orthogonal groups, Compos. Math. 149 (2013), no. 4, 587–636. 10.1112/S0010437X12000644Suche in Google Scholar

[26] D. A. Kazhdan and S. J. Patterson, Metaplectic forms, Inst. Hautes Études Sci. Publ. Math. (1984), no. 59, 35–142. 10.1007/BF02698770Suche in Google Scholar

[27] N. Matringe, Conjectures about distinction and local Asai L-functions, Int. Math. Res. Not. IMRN 2009 (2009), no. 9, 1699–1741. 10.1093/imrn/rnp002Suche in Google Scholar

[28] N. Matringe, Distinguished representations and exceptional poles of the Asai-L-function, Manuscripta Math. 131 (2010), no. 3–4, 415–426. 10.1007/s00229-009-0327-7Suche in Google Scholar

[29] N. Matringe, Linear and Shalika local periods for the mirabolic group, and some consequences, J. Number Theory 138 (2014), 1–19. 10.1016/j.jnt.2013.11.012Suche in Google Scholar

[30] N. Matringe, On the local Bump–Friedberg L-function, J. Reine Angew. Math. 709 (2015), 119–170. 10.1515/crelle-2013-0083Suche in Google Scholar

[31] C. Mœglin and J.-L. Waldspurger, Spectral Decomposition and Eisenstein Series, Cambridge Tracts in Math. 113, Cambridge University, Cambridge, 1995. 10.1017/CBO9780511470905Suche in Google Scholar

[32] G. Muić, Some applications of degenerate Eisenstein series on Sp2n, J. Ramanujan Math. Soc. 23 (2008), no. 3, 223–257. Suche in Google Scholar

[33] O. Offen, On local root numbers and distinction, J. Reine Angew. Math. 652 (2011), 165–205. 10.1515/crelle.2011.017Suche in Google Scholar

[34] I. Piatetski-Shapiro, L-functions for GSp4, Pacific J. Math. (1997), no. 1, 259–275. 10.2140/pjm.1997.181.259Suche in Google Scholar

[35] I. Piatetski-Shapiro and S. Rallis, L-Functions for the Classical Groups, Lecture Notes in Math. 1254, Springer, Berlin, 1987. 10.1007/BFb0078126Suche in Google Scholar

[36] I. Piatetski-Shapiro and S. Rallis, Rankin triple L functions, Compos. Math. 64 (1987), no. 1, 31–115. 10.1007/BFb0078126Suche in Google Scholar

[37] M. Rösner and R. Weissauer, Exceptional poles of local spinor L-functions of gsp(4) with anisotropic bessel models, preprint (2018), https://arxiv.org/abs/arXiv:1803.07539v2. Suche in Google Scholar

[38] R. Schmidt and L. Tran, Zeta integrals for GSp(4) via Bessel models, Pacific J. Math. 296 (2018), no. 2, 437–480. 10.2140/pjm.2018.296.437Suche in Google Scholar

[39] F. Shahidi, A proof of langlands’ conjecture on plancherel measures; complementary series for p-adic groups, Ann. of Math. (2), 132 (1990), no. 2, 273–330. 10.2307/1971524Suche in Google Scholar

[40] S. Takeda, The twisted symmetric square L-function of GL(r), Duke Math. J. 163 (2014), no. 1, 175–266. 10.1215/00127094-2405497Suche in Google Scholar

[41] S. Takeda, On a certain metaplectic Eisenstein series and the twisted symmetric square L-function, Math. Z. 281 (2015), no. 1–2, 103–157. 10.1007/s00209-015-1476-xSuche in Google Scholar

[42] J. Tate, Number theoretic background, Automorphic Forms, Representations and L-Functions (Corvallis 1977), Proc. Sympos. Pure Math. 33, American Mathematical Society, Providence (1979), 3–26. 10.1090/pspum/033.2/546607Suche in Google Scholar

[43] J.-L. Waldspurger, La formule de Plancherel pour les groupes p-adiques (d’après Harish-Chandra), J. Inst. Math. Jussieu 2 (2003), no. 2, 235–333. 10.1017/S1474748003000082Suche in Google Scholar

[44] S. Yamana, Local symmetric square L-factors of representations of general linear groups, Pacific J. Math. 286 (2017), no. 1, 215–256. 10.2140/pjm.2017.286.215Suche in Google Scholar

[45] R. Ye and E. Zelingher, Exterior square gamma factors for cuspidal representations of GLn: finite field analogs and level zero representations, preprint (2018), https://arxiv.org/abs/arXiv:1807.04816. 10.29007/h5vsSuche in Google Scholar

[46] A. V. Zelevinsky, Induced representations of reductive 𝔭-adic groups. II. On irreducible representations of GL(n), Ann. Sci. Éc. Norm. Supér. (4) 13 (1980), no. 2, 165–210. 10.24033/asens.1379Suche in Google Scholar

Received: 2019-07-30
Revised: 2020-02-15
Published Online: 2020-05-09
Published in Print: 2020-07-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 10.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2019-0207/html
Button zum nach oben scrollen