Startseite Mathematik Asymptotic behaviour for elliptic operators with second-order discontinuous coefficients
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Asymptotic behaviour for elliptic operators with second-order discontinuous coefficients

  • Luigi Negro ORCID logo und Chiara Spina EMAIL logo
Veröffentlicht/Copyright: 4. Dezember 2019

Abstract

We study the behaviour at infinity, in suitable weighted Lp-norms, of solutions of parabolic problems associated to the second order elliptic operator

L=Δ+(a-1)i,j=1Nxixj|x|2Dij+cx|x|2-b|x|-2,

where a>0 and b,c.


Communicated by Christopher D. Sogge


References

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau Standards Appl. Math. Ser. 55, Government Printing Office, Washington, D. C., 1964. 10.1115/1.3625776Suche in Google Scholar

[2] P. Baras and J. A. Goldstein, The heat equation with a singular potential, Trans. Amer. Math. Soc. 284 (1984), no. 1, 121–139. 10.1090/S0002-9947-1984-0742415-3Suche in Google Scholar

[3] G. Calvaruso, G. Metafune, L. Negro and C. Spina, Optimal kernel estimates for elliptic operators with second order discontinuous coefficients, submitted. 10.1016/j.jmaa.2019.123763Suche in Google Scholar

[4] G. Metafune, L. Negro, M. Sobajima and C. Spina, Rellich inequalities in bounded domains, submitted. 10.1007/s00208-019-01947-9Suche in Google Scholar

[5] G. Metafune, L. Negro and C. Spina, Sharp kernel estimates for elliptic operators with second-order discontinuous coefficients, J. Evol. Equ. 18 (2018), 467–514. 10.1007/s00028-017-0408-0Suche in Google Scholar

[6] G. Metafune, L. Negro and C. Spina, Gradient estimates for elliptic operators with second order discontinuous coefficients, Mediterr. J. Math., to appear. 10.1007/s00009-019-1415-xSuche in Google Scholar

[7] G. Metafune, M. Sobajima and C. Spina, An elliptic operator with second order discontinuous coefficients, preprint (2015). 10.1007/s00028-016-0355-1Suche in Google Scholar

[8] G. Metafune, M. Sobajima and C. Spina, Non-uniqueness for second order elliptic operators, Nonlinear Anal. 131 (2016), 155–169. 10.1016/j.na.2015.05.036Suche in Google Scholar

[9] G. Metafune, M. Sobajima and C. Spina, Kernel estimates for elliptic operators with second order discontinuous coefficients, J. Evol. Equ. 17 (2017), 485–522. 10.1007/s00028-016-0355-1Suche in Google Scholar

[10] G. Metafune, M. Sobajima and C. Spina, Rellich and Calderón–Zygmund inequalities for elliptic operators with discontinuous coefficients, Ann. Mat. Pura Appl. (4), to appear. Suche in Google Scholar

[11] D. Pilarczyk, Self-similar asymptotics of solutions to heat equation with inverse square potential, J. Evol. Equ. 13 (2013), no. 1, 69–87. 10.1007/s00028-012-0169-8Suche in Google Scholar

[12] E. M. Stein and G. L. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University, Princeton, 1971. 10.1515/9781400883899Suche in Google Scholar

[13] J. L. Vazquez, Asymptotic behaviour methods for the Heat Equation. Convergence to the Gaussian, preprint (2018), https://arxiv.org/abs/1706.10034v3. Suche in Google Scholar

[14] J. L. Vazquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal. 173 (2000), no. 1, 103–153. 10.1006/jfan.1999.3556Suche in Google Scholar

Received: 2019-06-13
Revised: 2019-10-15
Published Online: 2019-12-04
Published in Print: 2020-03-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 4.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2019-0150/pdf
Button zum nach oben scrollen