Startseite 𝐿𝑝-estimates for rough bi-parameter Fourier integral operators
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

𝐿𝑝-estimates for rough bi-parameter Fourier integral operators

  • Guangqing Wang und Wenyi Chen EMAIL logo
Veröffentlicht/Copyright: 16. Juli 2020

Abstract

In this paper, we study the Lq-Lr boundedness of bi-parameter Fourier integral operators defined by general rough Hörmander class amplitudes.

MSC 2010: 42B20; 42B37

Communicated by Christopher D. Sogge


Award Identifier / Grant number: 11131005

Funding statement: The research of author is supported by the NSFC (11131005).

References

[1] E. Cordero, F. Nicola and L. Rodino, Boundedness of Fourier integral operators on ℱ⁹Lp spaces, Trans. Amer. Math. Soc. 361 (2009), no. 11, 6049–6071. 10.1090/S0002-9947-09-04848-XSuche in Google Scholar

[2] E. Cordero, F. Nicola and L. Rodino, On the global boundedness of Fourier integral operators, Ann. Global Anal. Geom. 38 (2010), no. 4, 373–398. 10.1007/s10455-010-9219-zSuche in Google Scholar

[3] S. Coriasco and M. Ruzhansky, On the boundedness of Fourier integral operators on Lpⁱ(ℝn), C. R. Math. Acad. Sci. Paris 348 (2010), no. 15–16, 847–851. 10.1016/j.crma.2010.07.025Suche in Google Scholar

[4] W. Dai and G. Lu, Lp estimates for multi-linear and multi-parameter pseudo-differential operators, Bull. Soc. Math. France 143 (2015), no. 3, 567–597. 10.24033/bsmf.2698Suche in Google Scholar

[5] D. Dos Santos Ferreira and W. Staubach, Global and local regularity of Fourier integral operators on weighted and unweighted spaces, Mem. Amer. Math. Soc. 229 (2014), no. 1074, 1–65. Suche in Google Scholar

[6] G. I. Èskin, Degenerate elliptic pseudodifferential equations of principal type, Mat. Sb. (N.S.) 82(124) (1970), 585–628; translation in Math. USSR Sbornik 11 (1970), 539–82. 10.1070/SM1970v011n04ABEH001304Suche in Google Scholar

[7] R. Fefferman and E. M. Stein, Singular integrals on product spaces, Adv. Math. 45 (1982), no. 2, 117–143. 10.1016/S0001-8708(82)80001-7Suche in Google Scholar

[8] Q. Hong and G. Lu, Symbolic calculus and boundedness of multi-parameter and multi-linear pseudo-differential operators, Adv. Nonlinear Stud. 14 (2014), no. 4, 1055–1082. 10.1515/ans-2014-0413Suche in Google Scholar

[9] Q. Hong and G. Lu, Weighted Lp estimates for rough bi-parameter Fourier integral operators, J. Differential Equations 265 (2018), no. 3, 1097–1127. 10.1016/j.jde.2018.03.024Suche in Google Scholar

[10] Q. Hong, G. Lu and L. Zhang, Lp boundedness of rough bi-parameter Fourier integral operators, Forum Math. 30 (2018), no. 1, 87–107. 10.1515/forum-2016-0221Suche in Google Scholar

[11] Q. Hong and L. Zhang, Lp estimates for bi-parameter and bilinear Fourier integral operators, Acta Math. Sin. (Engl. Ser.) 33 (2017), no. 2, 165–186. 10.1007/s10114-016-6269-6Suche in Google Scholar

[12] L. Hörmander, Pseudo-differential operators and hypoelliptic equations, Singular Integrals (Chicago 1966), Proc. Sympos. Pure Math. 10, American Mathematical Society, Providence (1967), 138–183. 10.1090/pspum/010/0383152Suche in Google Scholar

[13] L. Hörmander, Fourier integral operators. I, Acta Math. 127 (1971), no. 1–2, 79–183. 10.1007/978-3-662-03030-1_2Suche in Google Scholar

[14] J.-L. JournĂ©, CalderĂłn–Zygmund operators on product spaces, Rev. Mat. Iberoam. 1 (1985), no. 3, 55–91. 10.4171/RMI/15Suche in Google Scholar

[15] G. Lu and L. Zhang, Bi-parameter and bilinear Calderón–Vaillancourt theorem with subcritical order, Forum Math. 28 (2016), no. 6, 1087–1094. 10.1515/forum-2015-0156Suche in Google Scholar

[16] S. Rodríguez-López and W. Staubach, Estimates for rough Fourier integral and pseudodifferential operators and applications to the boundedness of multilinear operators, J. Funct. Anal. 264 (2013), no. 10, 2356–2385. 10.1016/j.jfa.2013.02.018Suche in Google Scholar

[17] A. Seeger, C. D. Sogge and E. M. Stein, Regularity properties of Fourier integral operators, Ann. of Math. (2) 134 (1991), no. 2, 231–251. 10.2307/2944346Suche in Google Scholar

[18] C. D. Sogge, Fourier integrals in classical analysis, 2nd ed., Cambridge Tracts in Math. 210, Cambridge University, Cambridge, 2017. 10.1017/9781316341186Suche in Google Scholar

Received: 2019-06-06
Revised: 2019-12-01
Published Online: 2020-07-16
Published in Print: 2020-11-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 12.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2019-0145/html
Button zum nach oben scrollen