Home Higher integrability near the initial boundary for nonhomogeneous parabolic systems of 𝑝-Laplacian type
Article Open Access

Higher integrability near the initial boundary for nonhomogeneous parabolic systems of 𝑝-Laplacian type

  • Sun-Sig Byun , Wontae Kim EMAIL logo and Minkyu Lim
Published/Copyright: August 6, 2020

Abstract

We establish a sharp higher integrability near the initial boundary for a weak solution to the following p-Laplacian type system:

{ut-div𝒜(x,t,u)=div|F|p-2F+finΩT,u=u0onΩ×{0},

by proving that, for given δ(0,1), there exists ε>0 depending on δ and the structural data such that

|u0|p+εLloc1(Ω)and|F|p+ε,|f|(δp(n+2)n)+εL1(0,T;Lloc1(Ω))|u|p+εL1(0,T;Lloc1(Ω)).

Our regularity results complement established higher regularity theories near the initial boundary for such a nonhomogeneous problem with f0 and we provide an optimal regularity theory in the literature.

MSC 2010: 35K20; 35K92

1 Introduction

In this paper, we are interested in finding a sharp higher integrability near the initial boundary to a weak solution to the parabolic system

{ut-div𝒜(x,t,u)=div|F|p-2F+finΩT,u=u0onΩ×{0}.

Here, 2nn+2<p<, Ω is a bounded domain in n with n2, 𝒜(x,t,ζ) is modeled after the p-Laplacian operator, u0W1,p(Ω,N), FLp(ΩT;Nn) and fLq(ΩT,N) for some N1, where q=p(n+2)n is the parabolic Sobolev conjugate of p and q is Hölder conjugate of q.

In the case f0, interior higher integrability results were proved by Kinnunen and Lewis in [13, 14] by providing a suitable application of DiBenedetto’s intrinsic geometry method from [9] to the setting of Gehring type estimates. Higher integrability results near the initial and lateral boundary were proved by Parviainen in [19, 20]. These regularity results were extended to higher-order systems by Bögelein and Parviainen in [5].

On the other hand, in the case f0, a nonlinear relation between the gradient of a weak solution and the non-divergence data f coming from parabolic embeddings naturally occurs. To be specific, there is an exponent α>1 such that uLpp is related to fLqqα. Indeed, there have been regularity estimates coming from such a nonlinear relation rather than Gehring type estimates. In particular, Kuusi and Mingione in [15] proved gradient L regularity and gradient continuity of a weak solution with an nonlinear exponent α based on the intrinsic geometry method. The recent paper [2] provides a new representation of the nonlinear relation. It replaces the exponent α by 1 from the intrinsic geometry method, obtaining interior higher integrability results for a system of p(x,t)-Laplacian type with scaling invariant estimates and extending gradient continuity results in [15] to the p(x,t)-Laplacian system. For the elliptic case, there is a divergence representation for the non-divergence data, and Gehring type estimates directly follow from [10, 17, 11].

As already mentioned, the main purpose of this paper is to establish higher integrability results near the initial boundary. In addition, we are considering a class of the nonlinearities whose structures are associated with the divergence data F. Regarding the non-divergence data, fL(δp(n+2)n) with δ(0,1) is sharp in obtaining the reverse Hölder inequality by the parabolic Sobolev embedding theorem. A noteworthy feature of the present paper is to find the optimality and sharpness of the initial data u0 from the intrinsic geometry method. Due to a suitable application of the Poincaré inequality in a type of the Caccioppoli inequality, u0Ls(Bρ)2 appears for some s>1. The optimal exponent s can be found in the process of the use of the Fubini theorem. In fact, (|u0|sdz)ps appears after using the reverse Hölder inequality, and the Minkowski integral inequality enforces the condition s=p. On the other hand, there is an alternative for the non-divergence data f to avoid applying the Minkowski integral inequality, thanks to the presence of radius ρ (see (4.3) below). Therefore, p is the optimal exponent for s, and we can find the sharp exponent β=min{2,p} in u0Lpβ from the stopping time argument.

Our work can be applicable to different problems including obstacle problem and system of p(x,t)-Laplacian type problem as in [6, 4] as well as Calderón–Zygmund type estimates as in [1, 3, 7, 8, 16] both when f0 and when u00.

The paper is organized as follows. In Section 2, we introduce basic notation and definitions to state our main results. Section 3 is devoted to proving reverse Hölder inequality. Finally, in Section 4, we prove our main results.

2 Basic notations and results

2.1 Notations

We shall clarify all the notations that will be used in this paper.

  1. We use to denote derivatives with respect the space variable x and t to denote the time derivative.

  2. In what follows, we always assume the bounds 2nn+2<p<.

  3. Let z0=(x0,t0)n+1 be a point, ρ,s>0 two given parameters, and let λ[1,). We use the following notations:

    Is(t0):=(t0-s2,t0+s2),Qρ,s(z0):=Bρ(x0)×Is(t0)n+1,
    Isλ(t0):=(t0-λ2-ps2,t0+λ2-ps2),Qρ,sλ(z0):=Bρ(x0)×Isλ(t0)n+1,
    Qρλ(z0):=Qρ,ρλ(z0),Qρ(z0):=Qρ1(z0).

  4. We use to denote the integral with respect to either space variable or time variable and use to denote the integral with respect to both space and time variables simultaneously.

    Analogously, we use and to denote the integral averages as defined below: for any set A×Bn×, we define

    (f)A:=Af(x)dx=1|A|Af(x)dx,(f)A×B:=A×Bf(x,t)dxdt=1|A×B|A×Bf(x,t)dxdt.
  5. We use the notation (a,b,) to denote an inequality with a constant depending on a,b,.

Definition 2.1.

Let Ω be a bounded domain in n with n2 and u0L2(Ω,N), fL(p(n+2)n)(ΩT;N) for some N1. A weak solution uC(0,T;L2(Ω,N))Lp(0,T;W1,p(Ω,N)) to

(2.1){ut-div𝒜(x,t,u)=finΩT,u=u0onΩ×{0}

is a distributional energy solution in the sense

ΩT-uϕt+𝒜(x,t,u),ϕdz=ΩTfϕdzfor allϕC0(ΩT,N),

and

(2.2)limh0+0hΩ|u(x,t)-u0(x)|2dxdt=0.

2.2 Structures of the operator

We now describe the assumptions on the nonlinear structures in (2.1). Assume 𝒜(x,t,u) is a Carathéodory function, i.e., we have that (x,t)𝒜(x,t,ζ) is measurable for every ζn and ζ𝒜(x,t,ζ) is continuous for almost every (x,t)ΩT.

We further assume that, for a.e. (x,t)ΩT and for any ζn, there exist two positive constants Λ0 and Λ1 such that the following bounds are satisfied by the nonlinear structures:

(2.3)𝒜(x,t,ζ),ζΛ0|ζ|p-|F(x,t)|pand|𝒜(x,t,ζ)|Λ1|ζ|p-1+|F(x,t)|p-1,

where FLp(ΩT,Nn).

2.3 Main results

Before stating our main theorem, we fix some constants which will be frequently used in this paper.

Definition 2.2.

For fixed constants

max{nn+2,n+1(n+2)p}<δ<1andd:={p2ifp2,2pp(n+2)-2nifp<2,

we denote

𝔞:=δp(n+2)n,ν:=𝔞(min{2,p}2-p𝔞)andα:=(1-dpν)-1.

Remark 2.3.

(i) 0<pdα holds, and (ii) 𝔞 is a parabolic Sobolev conjugate of δp.

To see Remark 2.3 (i), we split two cases.

  1. Case p2: There hold pdα=pd-𝔞(1-p𝔞) and

    pd-𝔞(1-p𝔞)=2-𝔞(1-p𝔞)>02𝔞-(1-p𝔞)>02-2𝔞>1-p𝔞1>1𝔞(2-p).
  2. Case p<2: There hold pdα=pd-𝔞(p2-p𝔞) and

    0<pdα=p(n+2)-2n2-𝔞(p2-p𝔞)0<n(p-2)𝔞+p2n-pn-p<2n-pn𝔞.

    Recall 𝔞=δp(n+2)n. Since δ(0,1) and

    (n+2)p[2n-(n+1)p]n2(2-p)((n+2)p-2n)((n+1)p-n)0,

    the remark follows.

To apply the intrinsic geometry method developed in [13], let us define the following notations.

Definition 2.4.

Let uC(0,T;L2(Ω,N))Lp(0,T;W1,p(Ω,N)) be a weak solution of (2.1) under the assumption of (2.2), (2.3) and fL𝔞(ΩT,N). For any (x0,t0)=z0ΩT and B2r(x0)Ω, we define

λ0pd:=Q2r(z0)ΩT(|u|+|F|+1)pdz+(Q2r(z0)ΩT(2r)𝔞|f|𝔞dz)α+(B2r(x0)|u0|pdx)min{1,2p}.

Now, we state the main theorem.

Theorem 2.5.

Let uC(0,T;L2(Ω,RN))Lp(0,T;W1,p(Ω,RN)) be a weak solution of (2.1) under the assumption of (2.2), (2.3) and fLa(ΩT,RN). Then there exists ε0(n,N,p,Λ0,Λ1,δ) such that, for any ε(0,ε0) and for any (x0,t0)=z0ΩT such that B2r(x0)Ω, there holds

Qr(z0)ΩT|u|p+εdz(n,N,p,Λ0,Λ1,δ)λ0εQ2r(z0)ΩT|u|pdz+Q2r(z0)ΩT(|F|+1)p+εdz+B2r(x0)|u0|p+εdx+λ0ν(1+εp)Q2r(z0)ΩT(2r|f|)𝔞+𝔞pεdz.

Here, λ0 is defined in Definition 2.4.

Remark 2.6.

As a consequence of Theorem 2.5, we can also obtain global estimates of the weak solution to

{ut-div𝒜(x,t,u)=finΩT,u=ϕonΩ×(0,T),u=u0onΩ×{0},

where 𝒜, f and u0 are assumed as in (2.1) and ϕLp(0,T;W1,p(ΩT,N)) such that ϕtL(p(n+2)n)(ΩT,N). Especially, ϕ behaves like divergence data F does while ϕt behaves exactly in the same way as non-divergence data f does.

Before ending this section, we provide some important lemmas which will be used later in the proof of the main theorem. Let us state Gagliardo–Nirenberg’s inequality (see [18]).

Lemma 2.7.

Let Bρ(x0)Rn with 0<ρ1, σ,q,r[1,) and ϑ(0,1) such that -nσϑ(1-nq)-(1-ϑ)nr. Then, for any uW1,q(Bρ(x0)), there holds

Bρ(x0)|u|σρσdx(n,σ,q)(Bρ(x0)|u|qρq+|u|qdx)ϑσq(Bρ(x0)|u|rρrdx)(1-ϑ)σr.

The following iteration lemma can be found in [12, Lemma 6.1].

Lemma 2.8.

Let 0<r<R< be given, and let h:[r,R]R be a non-negative and bounded function. Furthermore, let θ(0,1) and A,B,γ1,γ20 be fixed constants, and suppose that

h(ρ1)θh(ρ2)+A(ρ2-ρ1)γ1+B(ρ2-ρ1)γ2,

holds for all rρ1<ρ2R. Then the following conclusion holds:

h(r)(θ,γ1,γ2)A(R-r)γ1+B(R-r)γ2.

3 Estimates near the initial boundary

In this section, we assume that B4ρ(x0)Ω, 0<t0 and λ1. Also, note that, in the case 0I4ρλ(t0), for any ρρ1ρ24ρ, there holds

(3.1)|Iρ1λ(t0)||Iρ2λ(t0)|42|Iρ1λ(t0)|and12|Iρ1λ(t0)||Iρ1λ(t0)(0,T)||Iρ1λ(t0)|.

We will show a reverse Hölder inequality in intrinsic cylinders under the following assumptions.

Assumption 3.1.

We assume

(3.2)Q4ρλ(z0)ΩT(|u|+|F|+1)pdz+λ𝔞(1-p𝔞)Q4ρλ(z0)ΩT(4ρ)𝔞|f|𝔞dz+B4ρ(x0)|u0|pdxλp,
(3.3)Qρλ(z0)ΩT(|u|+|F|+1)pdz+λ𝔞(1-p𝔞)Qρλ(z0)ΩTρ𝔞|f|𝔞dz+Bρ(x0)|u0|pdxλp,

Note that, by a choice of δ(0,1) in Definition 2.2, 0<𝔞(1-p𝔞)<p holds, and this exponent 𝔞(1-p𝔞) is chosen to preserve a nonlinear relation between the gradient of a weak solution and the non-divergence data. Indeed, using Young’s inequality, (3.3) becomes

Qρλ(z0)ΩT(|u|+|F|+1)pdz+(Qρλ(z0)ΩTρ𝔞|f|𝔞dz)(1-𝔞p(1-p𝔞))-1+Bρ(x0)|u0|pdxλp.

3.1 Caccioppoli inequality and Poincaré type inequality

Let us first state a Caccioppoli type inequality.

Lemma 3.2.

Let u be a weak solution of (2.1). Suppose B4ρ(x0)Ω and 0<t0. Then, for any ρρa<ρb4ρ, there holds

1|Iρaλ(t0)|suptIρaλ(t0)Bρa|u-(u0)Bρa(x0)|2dz+Qρaλ(z0)ΩT|u|pdz(n,N,p,Λ0,Λ1)Qρbλ(z0)ΩT[|u-(u0)Bρb(x0)|ρb-ρa]pdz+λp-2Qρbλ(z0)ΩT[|u-(u0)Bρb(x0)|ρb-ρa]2dz+Qρbλ(z0)ΩT|f||u-(u0)Bρb(x0)|dz+λp-2(Bρb(x0)|u0|pdz)2p+Qρbλ(z0)ΩT|F|pdz.

Proof.

The proof basically follows from [5, Lemma 5.1]. For the sake of completeness, we present the details in our setting.

In the space direction, take a cut-off function η satisfying

0η=η(x)Cc(Bρb(x0)),η1onBρa(x0),|η|cρb-ρa.

For the time direction, we divide two cases. In the case that 0I4ρλ(t0), consider a cut-off function ζ satisfying

0ζ=ζ(t)Cc(Iρbλ(t0)),ζ1onIρaλ(t0),|tζ|cλ2-p(ρb-ρa)2.

On the other hand, in the case that 0I4ρλ(t0), consider a cut-off function ζ satisfying

0ζ=ζ(t)Cc(Iρbλ(t0)),ζ1on 0tt0+λ2-pρa2,|tζ|cλ2-p(ρb-ρa)2.

Taking (u-(u0)Bρb(x0))ηpζ2 as a test function in (2.1), we obtain

I+II:=Qρbλ(z0)ΩTtu(u-(u0)Bρb(x0))ηpζ2dz+Qρbλ(z0)ΩT𝒜(z,u),uηpζ2dzQρbλ(z0)ΩT|𝒜(z,u)||η||u-(u0)Bρb(x0)|ηp-1ζ2dz+Qρbλ(z0)ΩT|f||u-(u0)Bρb(x0)|ηpζ2dz=:III+IV.

Estimate of I: We use integration by parts and (2.2) to find that

I12|Iρbλ(t0)|suptIρbλ(t0)Bρb(x0)|u-(u0)Bρb(x0)|2ηpζ2dx-12|Iρbλ(t0)|Bρb(x0)|u0-(u0)Bρb(x0)|2ηpζ2dx-12Qρbλ(z0)ΩT|u-(u0)Bρb(x0)|2ηpζtζdz=:I1-I2-I3.

Estimate of I1: Using the triangle inequality along with the fact that ρρaρb4ρb and (3.1), we obtain

1|Iρaλ(t0)|suptIρaλ(t0)Bρa(x0)|u-(u0)Bρa(x0)|2dxI1.

Estimate of I2: Applying Poincaré’s inequality, we have

I212|Iρbλ(t0)|Bρb(x0)|u0-(u0)Bρb(x0)|2dxλp-2(Bρb(x0)|u0|pdx)2p.

Estimate of I3: We get

I3λp-2Qρbλ(z0)ΩT[|u-(u0)Bρb(x0)|ρb-ρa]2dz.

Therefore, we obtain

I1|Iρaλ(t0)|suptIρaλ(t0)Bρa(x0)|u-(u0)Bρa(x0)|2dz-λp-2(Bρb(x0)|u0|pdz)2p-λp-2Qρbλ(z0)ΩT[|u-(u0)Bρb(x0)|ρb-ρa]2dz.

Estimate of II: Applying (2.3), we discover

IIQρbλ(z0)ΩT|u|pηpζ2dz-Qρbλ(z0)ΩT|F|pdz.

Estimate of III:

III(2.3)Qρbλ(z0)ΩT(|u|p-1+|F|p-1)[|u-(u0)Bρb(x0)|ρb-ρa]ηp-1ζ2dz(a)γQρbλ(z0)ΩT|u|pηpζ2dz+C(γ)Qρbλ(z0)ΩT[|u-(u0)Bρb(x0)|ρb-ρa]p+|F|pdz.

Here, to obtain (a), we used Young’s inequality with γ(0,1).

Estimate of IV: Clearly, there holds

IVQρbλ(z0)ΩT|f||u-(u0)Bρb(x0)|dz.

Combining all the above calculations and taking γ=γ(n,N,p,Λ0,Λ1) small enough, the conclusion follows. ∎

In our definition of a weak solution to (2.1), there is no differentiability assumption on u with respect to time. Therefore, we cannot apply Poincaré’s inequality directly. Nevertheless, we shall use (2.1) to estimate continuity of u with respect to time.

Lemma 3.3.

Let u be a weak solution of (2.1). Suppose that Br(x0)Ω and 0<t0. Then, for all θ[1,p], there holds

Qrλ(z0)ΩT[|u-(u0)Br(x0)|r]θdz(n,N,p,Λ1)Qrλ(z0)ΩT|u|θdz+(λ2-pQrλ(z0)ΩT|u|p-1+|F|p-1dz)θ+λθ(λ1-prQrλ(z0)ΩT|f|dz)θ+(Br(x0)|u0|dx)θ.

Proof.

Let 0ηCc(Br(x0)) such that Br(x0)ηdz=1 and η+rηC(n). For a.e. t, we denote weighted integral averages of u by

(u)η(t):=Br(x0)u(x,t)η(x)dx.

The triangle inequality gives

Qrλ(z0)ΩT[|u-(u0)Br(x0)|r]θdz(p)r-θ|Irλ(t0)(0,T)(u)η(t)-(u)Br(x0)(t)dt|θ+r-θQrλ(z0)ΩT|u-(u)η(t)|θdz+r-θ|Irλ(t0)(0,T)(u)Br(x0)(t)-(u0)Br(x0)dt|θ=:I+II+III.

Estimate of I: Applying Poincaré’s inequality in space direction, we obtain

Ir-θ|Irλ(t0)(0,T)Br(x0)|u-(u)Br(x0)(t)|ηdxdt|θr-θ|Irλ(t0)(0,T)Br(x0)|u-(u)Br(x0)(t)|dxdt|θQrλ(z0)ΩT|u|θdz.

Estimate of II: Similarly, we have

IIr-θQrλ(z0)ΩT|u-(u)Br(x0)(t)|θdzQrλ(z0)ΩT|u|θdz.

Estimate of III: Again, the triangle inequality implies

IIIr-θ|Irλ(t0)(0,T)(u)Br(x0)(t)-(u)η(t)dt|θ+r-θ|Irλ(t0)(0,T)(u)η(t)-(u0)ηdt|θ+r-θ|(u0)Br(x0)-(u0)η|θQrλ(z0)ΩT|u|θdz+r-θ|Irλ(t0)(0,T)(u)η(t)-(u0)ηdt|θ+(Br(x0)|u0|dx)θ.

To estimate the second term, we test η to (2.1) in Br(x0)×(t1,t2)Qrλ(z0)ΩT. Then (2.3) implies that

|(u)η(t1)-(u)η(t2)|(Λ1)t1t2Br(x0)|u|p-1|η|+|F|p-1|η|+|f||η|dxdt(3.1)λ2-prQrλ(z0)ΩT|u|p-1+|F|p-1dz+λ2-pr2Qrλ(z0)ΩT|f|dz.

Using (2.2), we obtain

suptIrλ(t0)|(u)η(t)-(u0)η|λ2-prQrλ(z0)ΩT|u|p-1+|F|p-1dz+λ2-pr2Qrλ(z0)ΩT|f|dz.

Therefore, we get

III(n,N,p,Λ1)Qrλ(z0)ΩT|u|θdz+(λ2-pQrλ(z0)ΩT|u|p-1+|F|p-1dz)θ+λθ(λ1-prQrλ(z0)ΩT|f|dz)θ+(Br(x0)|u0|dx)θ.

This completes the proof. ∎

3.2 Some crucial estimates

The purpose of this subsection is to refine the estimate u in C(Irλ(t0)(0,T);L2(Br(x0),N). To this end, we first estimate the right-hand side of the inequality in Lemma 3.2 using Lemma 3.3 and assumption (3.2), and then return to the left-hand side of the inequality.

Lemma 3.4.

Let u be a weak solution of (2.1). Suppose B4ρ(x0)Ω and 0<t0. Also, assume (3.2) for some λ1. Then, for all θ[1,p], there holds

Q4ρλ(z0)ΩT[|u-(u0)B4ρ(x0)|4ρ]θdz(n,N,p,Λ0,Λ1)λθ.

Proof.

Applying Lemma 3.3 and Hölder’s inequality, we find

Q4ρλ(z0)ΩT[|u-(u0)B4ρ(x0)|4ρ]θdz(Q4ρλ(z0)ΩT|u|pdz)θp+[λ2-p(Q4ρλ(z0)ΩT|u|p+|F|pdz)p-1p]θ+λθ(λ𝔞(1-p)Q4ρλ(z0)ΩT(4ρ)𝔞|f|𝔞dz)θ𝔞+(B4ρ(x0)|u0|pdx)θp.

Note that

(3.4)λ𝔞(1-p)Q4ρλ(z0)ΩT(4ρ)𝔞|f|𝔞dz=λ𝔞(1-p𝔞)-pQ4ρλ(z0)ΩT(4ρ)𝔞|f|𝔞dz(3.2)1.

Therefore, making use of (3.2), this completes the proof. ∎

Lemma 3.5.

Under the assumptions and the conclusion in Lemma 3.4, we further have

supI2ρλ(t0)(0,T)B2ρ(x0)[|u-(u0)B2ρ(x0)|2ρ]2dx(n,N,p,Λ0,Λ1)λ2.

Proof.

Take 2ρρa<ρb4ρ in Lemma 3.2 to get

λp-2supIρaλ(t0)(0,T)Bρa(x0)[|u-(u0)Bρa(x0)|ρa]2dxQρbλ(z0)ΩT[|u-(u0)Bρb(x0)|ρb-ρa]pdz+λp-2Qρbλ(z0)ΩT[|u-(u0)Bρb(x0)|ρb-ρa]2dz+Qρbλ(z0)ΩT|f||u-(u0)Bρb(x0)|dz+λp-2(Bρb(x0)|u0|pdz)2p+Qρbλ(z0)ΩT|F|pdz=:I+II+III+IV+V.

Estimate of I: Note that, under the restriction 2ρρa<ρb4ρ, we see that

(3.5)(ρb-ρaρb)pIQρbλ(z0)[|u-(u0)B4ρ(x0)|ρb]pdz+[|(u0)Bρb(x0)-(u0)B4ρ(x0)|ρb]pQ4ρλ(z0)[|u-(u0)B4ρ(x0)|4ρ]pdz+B4ρ[|u0-(u0)B4ρ|4ρ]pdx(a)λp.

Here, to obtain (a), we used Lemma 3.4 and Poincaré’s inequality with (3.2) for initial data.

Estimate of II: There holds that

II=λp-2(ρbρb-ρa)2Iρbλ(t0)(0,T)(Bρb(x0)[|u-(u0)Bρb(x0)|ρb]2dx)12(Bρb(x0)[|u-(u0)Bρb(x0)|ρb]2dx)12dt(a)λp-22(ρbρb-ρa)2(Qρbλ(z0)[|u-(u0)Bρb(x0)|ρb]p+|u|pdz)1p×(λp-2supIρbλ(t0)(0,T)Bρb(x0)[|u-(u0)Bρb(x0)|ρb]2dx)12(b)λp2(ρbρb-ρa)2(λp-2supIρbλ(t0)(0,T)Bρb(x0)[|u-(u0)Bρb(x0)|ρb]2dx)12,

where, to obtain (a), we used Sobolev’s inequality with respect to space direction and then Hölder’s inequality with respect to the time integral, and to obtain (b), we used (3.5) and (3.2).

Applying Young’s inequality, for any γ(0,1), there holds

IIγ(λp-2supIρbλ(t0)(0,T)Bρb(x0)[|u-(u0)Bρb(x0)|ρb]2dx)+C(γ)(ρbρb-ρa)4λp.

Estimate of III: After applying Hölder’s inequality, we get

(3.6)IIIIρbλ(t0)(0,T)(Bρb(x0)ρb𝔞|f|𝔞dx)1𝔞(Bρb(x0)[|u-(u0)Bρb(x0)|ρb]𝔞dx)1𝔞dt(a)Iρbλ(t0)(0,T)(Bρb(x0)ρb𝔞|f|𝔞dx)1𝔞(Bρb(x0)[|u-(u0)Bρb(x0)|ρb]δp+|u|δpdx)1𝔞×(Bρb(x0)[|u-(u0)Bρb(x0)|ρb]2dx)1n+2dt(b)(Qρbλ(z0)ΩTρb𝔞|f|𝔞dz)1𝔞(Qρbλ(z0)ΩT[|u-(u0)Bρb(x0)|ρb]δp+|u|δpdz)1𝔞×(supIρbλ(t0)(0,T)Bρbλ(x0)[|u-(u0)Bρb(x0)|ρb]2dx)1n+2.

Here, to obtain (a), we used Lemma 2.7 with σ=𝔞, q=δp, r=2 and ϑ=nn+2. To obtain (b), we used Hölder’s inequality with respect to the time integral.

Also, the restriction ρρb4ρ and (3.1) imply

(Qρbλ(z0)ΩTρb𝔞|f|𝔞dz)1𝔞(Q4ρλ(z0)ΩT(4ρ)𝔞|f|𝔞dz)1𝔞(3.2)λp𝔞-p(1p-1𝔞)=λp(1𝔞+1𝔞)-1=λp-1.

Thus, along with (3.5) and (3.2), (3.6) becomes

IIIλp-1+nn+2(supIρbλ(t0)(0,T)Bρbλ(x0)[|u-(u0)Bρb(x0)|ρb]2dx)1n+2=λp(1-1n+2)(λp-2supIρbλ(t0)(0,T)Bρbλ(x0)[|u-(u0)Bρb(x0)|ρb]2dx)1n+2,

and Young’s inequality gives that

IIIγ(λp-2supIρbλ(t0)(0,T)Bρ2λ(x0)[|u-(u0)Bρb(x0)|ρb]2dx)+C(γ)λp,

where γ(0,1).

Estimate of IV and V:

IV+V(3.2)λp.

Combining estimates and taking γ=γ(n,N,p,Λ0,Λ1)(0,1) small enough, there holds

supIρaλ(t0)(0,T)Bρa(x0)[|u-(u0)Bρa(x0)|ρa]2dx12supIρbλ(t0)(0,T)Bρbλ(x0)[|u-(u0)Bρb(x0)|ρb]2dx+C(ρbρb-ρa)4λ2+C(ρbρb-ρa)pλ2,

where C=C(n,N,p,Λ0,Λ1). Hence, from Lemma 2.8, the conclusion follows. ∎

We will not use following corollary in further estimates for our purpose, but it is worthwhile observing the estimate of the corollary.

Corollary 3.6.

Under the assumptions and the conclusion in Lemma 3.5, we derive

Q2ρλ(z0)ΩT[|u-(u0)B2ρ(x0)|2ρ]p(n+2)ndx(n,N,p,Λ0,Λ1)λp(n+2)n.

Proof.

Constants σ=p(n+2)n, q=p, r=2 and ϑ=nn+2(0,1) satisfy the condition in Lemma 2.7. Therefore, we obtain

Q2ρλ(z0)ΩT[|u-(u0)B2ρ(x0)|2ρ]p(n+2)ndzI2ρλ(t0)(0,T)(B2ρ(x0)[|u-(u0)B2ρ(x0)|2ρ]p+|u|pdx)(B2ρ(x0)[|u-(u0)B2ρ(x0)|2ρ]2dx)pndt(Q2ρλ(z0)ΩT[|u-(u0)B2ρ(x0)|2ρ]p+|u|pdz)(supI2ρλ(t0)(0,T)B2ρ(x0)[|u-(u0)B2ρ(x0)|2ρ]2dx)pn(a)λp(n+2)n,

where, to obtain (a), we used Lemma 3.4, (3.2), (3.5) and Lemma 3.5. ∎

3.3 Reverse Hölder inequality in intrinsic cylinders

We are now ready to obtain a reverse Hölder inequality under assumptions (3.2) and (3.3). We shall again estimate the right-hand side of Lemma 3.2 with ρa=ρ and ρb=2ρ using Lemma 3.5. Let us fix a constant

(3.7)q:=max{2nn+2,p-1,npn+2,δp}.

Lemma 3.7.

Let u be a weak solution of (2.1). Suppose B4ρ(x0)Ω and 0<t0. Also, assume (3.2) for some λ1. Then, for any γ(0,1), there holds

λp-2Q2ρλ(z0)[|u-(u0)B2ρ(x0)|2ρ]2dz(n,N,p,Λ0,Λ1,δ)γλp+C(γ)(Q2ρλ(z0)ΩT|u|qdz)pq+C(γ)Q2ρλ(z0)ΩT|F|pdz+C(γ)λ𝔞(1-p𝔞)Q2ρλ(z0)ΩT(2ρ)𝔞|f|𝔞dz+C(γ)B2ρ(x0)|u0|pdx.

Proof.

We apply Lemma 2.7 with σ=2, q as defined in (3.7), r=2, and any ϑ(0,1) is admissible since

-n2ϑ(1-nq)-(1-ϑ)n22nn+2q.

Let us take ϑ(0,1) such that

0<ϑ<min{q2,p2(p-1),12}.

Then we get

Q2ρλ(z0)[|u-(u0)B2ρ(x0)|2ρ]2dzI2ρλ(t0)(B2ρ(x0)[|u-(u0)B2ρ(x0)|2ρ]q+|u|qdx)2ϑq(B2ρ(x0)[|u-(u0)B2ρ(x0)|2ρ]2dx)1-ϑdt(a)(Q2ρλ(z0)[|u-(u0)B2ρ(x0)|2ρ]q+|u|qdz)2ϑq(supI2ρλ(t0)(0,T)B2ρ(x0)[|u-(u0)B2ρ(x0)|2ρ]2dx)1-ϑ(b)λ2(1-ϑ)(Q2ρλ(z0)[|u-(u0)B2ρ(x0)|2ρ]q+|u|qdz)2ϑq,

where, to obtain (a), we used Hölder’s inequality along with the fact that 2ϑq1, and to obtain (b), we used Lemma 3.5.

Thus, applying Lemma 3.3 with θ=q to estimate the second term, we obtain

λp-2Q2ρλ(z0)[|u-(u0)B2ρ(x0)|2ρ]2dzλp-2ϑ(Q2ρλ(z0)ΩT|u|qdz)2ϑq+λp-2ϑ(λ2-pQ2ρλ(z0)ΩT|u|p-1+|F|p-1dz)2ϑ+λp(λ1-pQ2ρλ(z0)ΩT(2ρ)|f|dz)2ϑ+λp-2ϑ(B2ρ(x0)|u0|dx)2ϑ=:I+II+III+IV.

Estimate of I: Applying Young’s inequality along with the fact 2ϑp<2ϑq1, we get

Iγλp+C(γ)(Q2ρλ(z0)ΩT|u|qdz)pq.

Estimate of II: Similarly, since 2ϑ(p-1)p<1, Hölder’s inequality and Young’s inequality give

IIλp-2ϑ(p-1)(Q2ρλ(z0)ΩT|u|q+|F|qdz)pq2ϑ(p-1)p
γλp+C(γ)(Q2ρλ(z0)ΩT|u|qdz)pq+C(γ)(Q2ρλ(z0)ΩT|F|qdz)pq
γλp+C(γ)(Q2ρλ(z0)ΩT|u|qdz)pq+C(γ)Q2ρλ(z0)ΩT|F|pdz.

Estimate of III: Since 2ϑ𝔞<1, Young’s inequality gives

IIIλp(λ𝔞(1-p)Q2ρλ(z0)ΩT(2ρ)𝔞|f|𝔞dz)2ϑ𝔞=λp(1-2θ𝔞)(λ𝔞(1-p𝔞)Q2ρλ(z0)ΩT(2ρ)𝔞|f|𝔞dz)2ϑ𝔞γλp+C(γ)λ𝔞(1-p𝔞)Q2ρλ(z0)ΩT(2ρ)𝔞|f|𝔞dz.

Estimate of IV: Since 2ϑp<1, Hölder’s inequality and Young’s inequality give

IVλp-2ϑ(B2ρ(x0)|u0|pdx)2ϑpγλp+C(γ)B2ρ(x0)|u0|pdx.

Therefore, combining all the estimates, the proof is completed. ∎

Lemma 3.8.

Under the assumptions and the conclusion in Lemma 3.7, we further have

Q2ρλ(z0)[|u-(u0)B2ρ(x0)|2ρ]pdz(n,N,p,Λ0,Λ1,δ)γλp+C(γ)(Q2ρλ(z0)ΩT|u|qdz)pq+C(γ)Q2ρλ(z0)ΩT|F|pdz+C(γ)λ𝔞(1-p𝔞)Q2ρλ(z0)ΩT(2ρ)𝔞|f|𝔞dz+C(γ)B2ρ(x0)|u0|pdx.

Proof.

We apply Lemma 2.7 with σ=p, q as defined in (3.7), r=2 and ϑ=qp. Note that (3.7) implies

npn+2q-npqp(1-nq)-(1-qp)n2.

Therefore, we have

Q2ρλ(z0)[|u-(u0)B2ρ(x0)|2ρ]pdzI2ρλ(t0)(B2ρ(x0)[|u-(u0)B2ρ(x0)|2ρ]q+|u|qdx)pϑq(B2ρ(x0)[|u-(u0)B2ρ(x0)|2ρ]2dx)p(1-ϑ)2dt(a)Q2ρλ(z0)ΩT[|u-(u0)B2ρ(x0)|2ρ]q+|u|qdz(supI2ρλ(t0)(0,T)B2ρ(x0)[|u-(u0)B2ρ(x0)|2ρ]2dx)p(1-ϑ)2(b)λp(1-ϑ)Q2ρλ(z0)ΩT[|u-(u0)B2ρ(x0)|2ρ]q+|u|qdz=λp-qQ2ρλ(z0)ΩT[|u-(u0)B2ρ(x0)|2ρ]q+|u|qdz.

Here, to obtain (a), we used pϑq=1, and to obtain (b), we used Lemma 3.5. Now, we apply Lemma 3.3 with θ=q to the first term on the right-hand side to get

Q2ρλ(z0)[|u-(u0)B2ρ(x0)|2ρ]pdzλp-qQ2ρλ(z0)ΩT|u|qdz+λp-q(λ2-pQ2ρλ(z0)ΩT|u|p-1+|F|p-1dz)q+λp(λ1-pQ2ρλ(z0)ΩT(2ρ)|f|dz)q+λp-q(B2ρ(x0)|u0|dx)q=:I+II+III+IV.

Estimate of I: Applying Young’s inequality, there holds

Iγλp+C(γ)(Q2ρλ(z0)ΩT|u|qdz)pq.

Estimate of II: Applying Hölder’s inequality and Young’s inequality, we get

IIλp+q-pq(Q2ρλ(z0)ΩT|u|q+|F|qdz)pqq(p-1)pλp+q-pq(Q2ρλ(z0)ΩT|u|q+|F|qdz)pqp-1p(Q2ρλ(z0)ΩT|u|p+|F|pdz)(q-1)(p-1)p(3.2)λ(Q2ρλ(z0)ΩT|u|q+|F|qdz)pqp-1pγλp+C(γ)(Q2ρλ(z0)ΩT|u|qdz)pq+C(γ)Q2ρλ(z0)ΩT|F|pdz.

Estimate of III: We observe

IIIλp(λ𝔞(1-p)Q2ρλ(z0)ΩT(2ρ)𝔞|f|𝔞dz)q𝔞=λp(λ𝔞(1-p)Q2ρλ(z0)ΩT(2ρ)𝔞|f|𝔞dz)1𝔞(λ𝔞(1-p)Q2ρλ(z0)ΩT(2ρ)𝔞|f|𝔞dz)q-1𝔞(3.4)λp(λ𝔞(1-p)Q2ρλ(z0)ΩT(2ρ)𝔞|f|𝔞dz)1𝔞=λp(1-1𝔞)(λ𝔞(1-p𝔞)Q2ρλ(z0)ΩT(2ρ)𝔞|f|𝔞dz)1𝔞.

Therefore, Young’s inequality gives

IIIγλp+C(γ)λ𝔞(1-p𝔞)Q2ρλ(z0)ΩT(2ρ)𝔞|f|𝔞dz.

Estimate of IV: Hölder’s inequality and Young’s inequality imply

IVλp-q(B2ρ(x0)|u0|pdx)qpγλp+C(γ)B2ρ(x0)|u0|pdx.

We combine all the estimates to complete the proof. ∎

Lemma 3.9.

Under the assumptions and the conclusion in Lemma 3.7, we further have

Q2ρλ(z0)ΩT|f||u-(u0)|dz(n,N,p,Λ0,Λ1,δ)γλp+C(γ)(Q2ρλ(z0)ΩT|u|qdz)pq+C(γ)Q2ρλ(z0)ΩT|F|pdz+C(γ)λ𝔞(1-p𝔞)Q2ρλ(z0)ΩT(2ρ)𝔞|f|𝔞dz+C(γ)B2ρ(x0)|u0|pdx.

Proof.

Apply Lemma 2.7 as in (3.6) and Lemma 3.5 to get

Q2ρλ(z0)ΩT|f||u-(u0)|dzλ2n+2(Q2ρλ(z0)ΩT(2ρ)𝔞|f|𝔞dz)1𝔞(Q2ρλ(z0)ΩT[|u-(u0)B2ρ(x0)|2ρ]δp+|u|δpdz)1𝔞(3.4)λp-nn+2(Q2ρλ(z0)ΩT[|u-(u0)B2ρ(x0)|2ρ]δp+|u|δpdz)1𝔞λp-nn+2(Q2ρλ(z0)ΩT[|u-(u0)B2ρ(x0)|2ρ]q+|u|qdz)nq(n+2).

Using Lemma 3.3 with θ=q to the first term on the right-hand side, we have

Q2ρλ(z0)ΩT|f||u-(u0)|dzλp-nn+2(Q2ρλ(z0)ΩT|u|qdz)pqnp(n+2)+λp-nn+2(λ2-pQ2ρλ(z0)ΩT|u|p-1+|F|p-1dz)pqqnp(n+2)+λp(λ1-pQ2ρλ(z0)ΩT(2ρ)|f|dz)nn+2+λp-nn+2(B2ρ(x0)|u0|dx)nn+2=:I+II+III+IV.

Estimate of I: Applying Young’s inequality, we obtain

Iγλp+C(γ)(Q2ρλ(z0)ΩT|u|qdz)pq.

Estimate of II: Note that (p-1)np(n+2)<1. Apply Hölder’s inequality and Young’s inequality to get

IIλp+n(1-p)n+2(Q2ρλ(z0)ΩT|u|q+|F|qdz)pq(p-1)np(n+2)γλp+C(γ)(Q2ρλ(z0)ΩT|u|qdz)pq+C(γ)Q2ρλ(z0)ΩT|F|pdz.

Estimate of III: Applying Hölder’s inequality and Young’s inequality, we have

IIIλp(1-n𝔞(n+2))(λ𝔞(1-p𝔞)Q2ρλ(z0)ΩT(2ρ)𝔞|f|𝔞dz)n𝔞(n+2)γλp+C(γ)λ𝔞(1-p𝔞)Q2ρλ(z0)ΩT(2ρ)𝔞|f|𝔞dz.

Estimate of IV: Again, Hölder’s inequality and Young’s inequality give

IVγλp+C(γ)B2ρ(x0)|u0|pdx.

The proof follows.∎

Lemma 3.10.

Let u be a weak solution of (2.1). Suppose B4ρ(x0)Ω and 0<t0. Also, assume (3.2) and (3.3) for some λ1. Then there holds

Qρλ(z0)ΩT|u|pdz(n,N,p,Λ0,Λ1,δ)(Q2ρλ(z0)ΩT|u|qdz)pq+Q2ρλ(z0)ΩT|F|pdz+B2ρ(x0)|u0|pdx+λ𝔞(1-p𝔞)Q2ρλ(z0)ΩT(2ρ)𝔞|f|𝔞dz.

Proof.

From Lemma 3.2 with ρa=ρ and ρb=2ρ, there holds

Qρλ(z0)ΩT|u|pdzQ2ρλ(z0)ΩT[|u-(u0)B2ρ(x0)|2ρ]pdz+λp-2Q2ρλ(z0)ΩT[|u-(u0)B2ρ(x0)|2ρ]2dz+Q2ρλ(z0)ΩT|f||u-(u0)B2ρ(x0)|dz+λp-1(B2ρ(x0)|u0|pdz)1p+Q2ρλ(z0)ΩT|F|pdz=:I+II+III+IV+Q2ρλ(z0)ΩT|F|pdz.

We apply Lemma 3.7, Lemma 3.8 and Lemma 3.9 to I, II and III. Use Young’s inequality to estimate IV. Then there holds

λp(???)Qρλ(z0)ΩT|u|pdz+Qρλ(z0)ΩT|F|p+dzBρ(x0)|u0|pdx+λ𝔞(1-p𝔞)Qρλ(z0)ΩT(2ρ)𝔞|f|𝔞dzγλp+(Q2ρλ(z0)ΩT|u|qdz)pq+Qρλ(z0)ΩT|F|p+dzBρ(x0)|u0|pdx+λ𝔞(1-p𝔞)Qρλ(z0)ΩT(2ρ)𝔞|f|𝔞dz

Taking γ=γ(n,N,p,Λ0,Λ1,δ) small enough, we finish the proof. ∎

4 Proof of Theorem 2.5

In this section, we prove the main results. First of all, we shall find intrinsic cylinders such that (3.2) and (3.3) hold.

Definition 4.1.

Let z0ΩT, rr1<r22r and 𝔷=(𝔵,𝔱)Qr1(z0), and let d and α be defined in Definition 2.2.

Eλ:={zQr1(z0)ΩT:|u|p>λp},
𝔹:=[2(20rr2-r1)](n+2)dp+[2(20rr2-r1)](n+2)dαp+(20rr2-r1)np+(20rr2-r1)2np(n+2)-2n,
G(Qρλ(𝔷)):=Qρλ(𝔷)ΩT|u|pdz+Qρλ(𝔷)ΩT|F|pdz+Bρ(𝔵)|u0|pdx+λ𝔞(1-p𝔞)Qρλ(𝔷)ΩTρ𝔞|f|𝔞dz.

Lemma 4.2.

Let λ0 be defined in Definition 2.4. Then, for λ>3Bλ0 and zEλ, there exists ρz(0,r2-r110) such that

(4.1)G(Qρ𝔷λ(𝔷))=λp𝑎𝑛𝑑G(Qρλ(𝔷))<λpfor allρ(ρ𝔷,r2-r1).

Proof.

Due to intrinsic geometry, we split the proof into two cases.

Case p2: For any r2-r110<ρ<r2-r1, there holds

G(Qρλ(𝔷))|Q2r(z0)ΩT||Qρλ(𝔷)ΩT|Q2r(z0)ΩT(|u|+|F|+1)pdz+|Q2r(z0)ΩT||Qρλ(𝔷)ΩT|λ𝔞(1-p𝔞)Q2r(z0)ΩT(2r)𝔞|f|𝔞dz+|B2r(x0)||Bρ(𝔷)|B2r(x0)|u0|pdx.

Note that (3.1) implies

(4.2)|Q2r(z0)ΩT||Qρλ(𝔷)ΩT||Q2r(z0)|12|Qρλ(𝔷)|2(2rρ)n+2λp-22(20rr2-r1)n+2λp-2.

From Remark 2.3, we have pdα=2-𝔞(1-p𝔞)>0, d=p2,

Q2r(z0)ΩT(|u|+|F|+1)pdzλ02,B2r(x0)|u0|pdxλ0p,λ𝔞(1-p𝔞)Q2r(z0)ΩT(2r)𝔞|f|𝔞dzλ𝔞(1-p𝔞)λ0pdα=λ𝔞(1-p𝔞)λ02-𝔞(1-p𝔞).

It follows that

G(Qρλ(𝔷))2(20rr2-r1)n+2λp-2(λ02+λ𝔞(1-p𝔞)λ02-𝔞(1-p𝔞))+(20rr2-r1)nλ0p<λp.

On the other hand, since 𝔷Eλ, there exists ρ𝔷(0,r2-r110) such that (4.1) holds.

Case p<2: Let us denote ρλ:=λp-22ρ. Then, for any r2-r110<ρ<r2-r1, there holds

G(Qρλλ(𝔷))|Q2r(z0)ΩT||Qρλλ(𝔷)ΩT|Q2r(z0)ΩT(|u|+|F|+1)pdz+|Q2r(z0)ΩT||Qρλλ(𝔷)ΩT|λ𝔞(p2-p𝔞)Q2r(z0)ΩT(2r)𝔞|f|𝔞dz+|B2r(x0)||Bρλ(𝔷)|B2r(x0)|u0|pdx.

Here, we used the fact that ρλλp-22r for the second term. Note that

|Q2r(z0)ΩT||Qρλλ(𝔷)ΩT||Q2r(z0)|12|Qρλλ(𝔷)|2(20rr2-r1)n+2λ(2-p)n2.

Again, from Remark 2.3, we have pdα=p(n+2)-2n2-𝔞(p2-p𝔞)>0, pd=p(n+2)-2n2,

Q2r(z0)ΩT(|u|+|F|+1)pdz+B2r(x0)|u0|pdxλ0(p-2)n+2p2,λ𝔞(p2-p𝔞)Q2r(z0)ΩT(2r)𝔞|f|𝔞dzλ𝔞(p2-p𝔞)λ0pdα=λ𝔞(p2-p𝔞)λ0(p-2)n+2p2-𝔞(p2-p𝔞).

It follows that

G(Qrλλ(z0))2(20rr2-r1)n+2λ(2-p)n2(λ0(p-2)n+2p2+λ𝔞(p2-p𝔞)λ0(p-2)n+2p2-𝔞(p2-p𝔞))+(20rr2-r1)nλ(2-p)n2λ0p(n+2)-2n2<λp.

On the other hand, since 𝔷Eλ, there exists ρ𝔷(0,r2-r110) such that (4.1) holds. The lemma follows. ∎

We now define upper level sets.

Definition 4.3.

Let η>0 and λ>3𝔹λ0. We define the following:

  1. Φηλρ:={zQρ(z0)ΩT:|u|p(z)>ηλp},

  2. Ψηλρ:={zQρ(z0)ΩT:Hp(z)>ηλp} where H(z):=|F(z)|+|u0(x)|+1,

  3. Σηλρ:={zQρ(z0)ΩT:|f~η|(z)>ηλp}, where f~η:=2𝔞η-𝔞λ0ν(2r|f|(z))𝔞.

Our covering argument is divided into three steps.

Step 1

Let λ>3𝔹λ0 and 𝔷Eλ. Assumptions (3.2) in Q4ρ𝔷λ(𝔷) and (3.3) in Qρ𝔷λ(𝔷) are satisfied by (4.1). Applying Lemma 3.10, there exists q<p defined in (3.7) such that

G(Qρ𝔷λ(𝔷))(Q2ρ𝔷λ(𝔷)ΩT|u|qdz)pq+Q2ρ𝔷λ(𝔷)ΩT(|F|+1)pdz+Q2ρ𝔷λ(𝔷)ΩT|u0|pdx+λ𝔞(1-p𝔞)Q2ρ𝔷λ(𝔷)ΩT(2ρ𝔷)𝔞|f|𝔞dz=:I+II+III+IV.

Estimate of I+II+III: Let η(0,1) to be chosen later. There holds

Iηλp+(1|Q2ρ𝔷λ(𝔷)ΩT|Φηλr2Q2ρ𝔷λ(𝔷)|u|qdz)pqηλp+(1|Q2ρ𝔷λ(𝔷)ΩT|Φηλr2Q2ρ𝔷λ(𝔷)|u|qdz)(Q2ρ𝔷λ(𝔷)ΩT|u|qdz)pq-1(a)ηλp+1|Q2ρ𝔷λ(𝔷)ΩT|Φηλr2Q2ρ𝔷λ(𝔷)λp-q|u|qdz.

Here, to obtain (a), we used Hölder’s inequality and (4.1). Therefore, we get

I+II+IIIηλp+1|Q2ρ𝔷λ(𝔷)ΩT|Φηλr2Q2ρ𝔷λ(𝔷)λp-q|u|qdz+1|Q2ρ𝔷λ(𝔷)ΩT|Ψηλr2Q2ρ𝔷λ(𝔷)|H|pdz.

Estimate of IV: Let us consider the alternative

(4.3)λ𝔞(1-p𝔞)Q2ρ𝔷λ(𝔷)ΩT(2ρ𝔷)𝔞|f|𝔞dzηλporλ𝔞(1-p𝔞)Q2ρ𝔷λ(𝔷)ΩT(2ρ𝔷)𝔞|f|𝔞dzηλp.

Leaving the first case of (4.3), suppose the second case holds.

Case p2: Applying (4.2), we have

(4.4)ηλp2λ𝔞(1-p𝔞)+p-pd(rρ𝔷)n+2-𝔞Q2r(z0)ΩT(2r|f|)𝔞dz2λ𝔞(1-p𝔞)+p-pdλ0pdα(rρ𝔷)n+2-𝔞.

Since Definition 2.2 implies the inequality

(4.5)n+2-𝔞>1n+1>𝔞n+1n=(n+1)<𝔞=δp(n+2)nn+1p(n+2)<δ,

we see that (4.4) becomes

ρ𝔷r2η-1λ𝔞(1-p𝔞)-pdn+2-𝔞λ01n+2-𝔞pdα.

Therefore, we get

λ𝔞(1-p𝔞)Q2ρ𝔷λ(𝔷)ΩT(2ρ𝔷)𝔞|f|𝔞dz=λ𝔞(1-p𝔞)(ρ𝔷r)𝔞Q2ρ𝔷λ(𝔷)ΩT(2r)𝔞|f|𝔞dz2𝔞η-𝔞λ𝔞(1-p𝔞)+𝔞n+2-𝔞(𝔞(1-p𝔞)-pd)λ0𝔞n+2-𝔞pdαQ2ρ𝔷λ(𝔷)ΩT(2r)𝔞|f|𝔞dz(a)2𝔞η-𝔞λ0𝔞(1-p𝔞)Q2ρ𝔷λ(𝔷)ΩT(2r)𝔞|f|𝔞dz.

Here, to obtain (a), we used λλ0 and

𝔞nn+2-𝔞(1-1δ)+𝔞n+2-𝔞pdα=𝔞(1-p𝔞)+𝔞n+2-𝔞(𝔞(1-p𝔞)-pd)+𝔞n+2-𝔞pdα=𝔞(1-p𝔞).

It follows that both cases of (4.3) give

λ𝔞(1-p𝔞)Q2ρ𝔷λ(z0)ΩT(2ρ𝔷)𝔞|f|𝔞dzηλp+2𝔞η-𝔞λ0𝔞(1-p𝔞)Q2ρ𝔷λ(z0)ΩT(2r)𝔞|f|𝔞dz2ηλp+2𝔞η-𝔞λ0ν|Q2ρ𝔷λ(𝔷)ΩT|Σηλr2Q2ρ𝔷λ(𝔷)(2r)𝔞|f|𝔞dz.

Case p<2: Since ρ𝔷=λp-22ρ~𝔷 for some ρ~𝔷(0,r2-r110), (4.4) becomes

ηλp2λ𝔞(1-p𝔞)+n(2-p)2+𝔞(p-22)λ0pdα(rρ~𝔷)n+2-𝔞=2λ𝔞(p2-p𝔞)+n(2-p)2λ0pdα(rρ~𝔷)n+2-𝔞,

and thus (4.5) gives

(ρ~𝔷r)2η-1λ𝔞(p2-p𝔞)-pdn+2-𝔞λ01n+2-𝔞pdα.

Analogously, the second case of (4.3) implies

λ𝔞(1-p𝔞)Q2ρ𝔷λ(𝔷)ΩT(2ρ𝔷)𝔞|f|𝔞dz=λ𝔞(p2-p𝔞)(ρ~𝔷r)𝔞Q2ρ𝔷λ(𝔷)ΩT(2r)𝔞|f|𝔞dz2𝔞η-𝔞λ𝔞(p2-p𝔞)+𝔞n+2-𝔞(𝔞(p2-p𝔞)-pd)λ0𝔞n+2-𝔞pdαQ2ρ𝔷λ(𝔷)ΩT(2r)𝔞|f|𝔞dz(a)2𝔞η-𝔞λ0𝔞(p2-p𝔞)Q2ρ𝔷λ(𝔷)ΩT(2r)𝔞|f|𝔞dz.

Here, to obtain (a), we used λλ0 and

𝔞nn+2-𝔞(1-1δ)+𝔞n+2-𝔞pdα=𝔞(p2-p𝔞)+𝔞n+2-𝔞(𝔞(p2-p𝔞)-pd)+𝔞n+2-𝔞pdα=𝔞(p2-p𝔞).

Therefore, we have

λ𝔞(1-p𝔞)Q2ρ𝔷λ(z0)ΩT(2ρ𝔷)𝔞|f|𝔞dz2ηλp+2𝔞η-𝔞λ0ν|Q2ρ𝔷λ(𝔷)ΩT|Σηλr2Q2ρ𝔷λ(𝔷)(2r)𝔞|f|𝔞dz.

Combining all the estimates, we get

G(Qρ𝔷λ(𝔷))ηλp+1|Q2ρ𝔷λ(𝔷)ΩT|Φηλr2Q2ρ𝔷λ(𝔷)λp-q|u|qdz+1|Q2ρ𝔷λ(𝔷)ΩT|Ψηλr2Q2ρ𝔷λ(𝔷)|H|pdz+2𝔞η-𝔞λ0ν|Q2ρ𝔷λ(𝔷)ΩT|Σηλr2Q2ρ𝔷λ(𝔷)(2r)𝔞|f|𝔞dz.

Taking η=η(n,N,p,Λ0,Λ1,δ)(0,1) small enough, we obtain

Q10ρ𝔷λ(𝔷)ΩT|u|pdz1|Q2ρ𝔷λ(z0)ΩT|Φηλr2Q2ρ𝔷λ(𝔷)λp-q|u|qdz+1|Q2ρ𝔷λ(z0)ΩT|Ψηλr2Q2ρ𝔷λ(𝔷)|H|pdz+2𝔞η-𝔞λ0ν|Q2ρ𝔷λ(z0)ΩT|Σηλr2(2r)𝔞|f|𝔞dz.

Therefore, for any λ>3𝔹λ0 and 𝔷Eλ, there holds

(4.6)Q10ρ𝔷λ(𝔷)ΩT|u|pdzΦηλr2Q2ρ𝔷λ(𝔷)λp-q|u|qdz+Ψηλr2Q2ρ𝔷λ(𝔷)|H|pdz+Σηλr2Q2ρ𝔷λ(𝔷)|f~η|dz.

Step 2

We apply Vitali’s covering lemma to {Q2ρ𝔷λ(𝔷)}𝔷Eλ and to obtain a disjoint countable subfamily {Q2ρ𝔷iλ(𝔷i)}i such that

Eλ𝔷EλQ2ρ𝔷λ(𝔷)1i<Q10ρ𝔷iλ(𝔷i)Qr2(z0).

Therefore, we get

Eλ|u|pdz1i<Q10ρ𝔷iλ(𝔷)ΩT|u|pdz(a)Φηλr2λp-q|u|qdz+Ψηλr2|H|pdz+Σηλr2|f~η|dz.

where, to obtain (a), we used (4.6) for each i and disjointness of {Q2ρ𝔷iλ(𝔷i)}i in n+1.

Also, since there holds

Φηλr1Eλ|u|pdzΦηλr1Eλλp-q|u|qdz,

it follows

Φηλr1|u|pdzΦηλr2λp-q|u|qdz+Ψηλr2|H|pdz+Σηλr2|f~η|dz.

Letting λ1:=3η1p𝔹λ0, for any λ>λ1, we have

(4.7)Φλr1|u|pdzΦλr2λp-q|u|qdz+Ψλr2|H|pdz+Σλr2|f~η|dz.

Step 3

For k>λ1, let us define

|u|k:=min{|u|,k}andΦλ,kρ:={zQρ(z0)ΩT:|u|kp>λp}.

We see that if λ>k, then Φλ,kρ=, and if λk, then Φλ,kρ=Φλρ. From (4.7), we deduce

(4.8)Φλ,kr1|u|kp-q|u|qdzΦλ,kr2λp-q|u|qdz+Ψλr2|H|pdz+Σλr2|f~η|dz.

Let ε>0 to be chosen later. Multiply (4.8) by λε-1 and integrate over (λ1,) to get

(4.9)I:=λ1λε-1Φλ,kr1|u|kp-q|u|qdzdλλ1λε-1Φλ,kr2λp-q|u|qdzdλ+λ1λε-1Ψλr2|H|pdzdλ+λ1λε-1Σλr2|f~η|dzdλ=:II+III+IV.

Estimate of I: Applying Fubini’s theorem, we get

I=Φλ1,kr1|u|kp-q|u|qλ1|u|kλε-1dλdz=1εΦλ1,kr1|u|kp-q+ε|u|qdz-1ελ1εΦλ1,kr1|u|kp-q|u|qdz.

Estimate of II: Again, using Fubini’s theorem, we obtain

II=Φλ1,kr2|u|qλ1|u|kλp-q+ε-1dλdz1p-qΦλ1,kr2|u|kp-q+ε|u|qdz.

Estimate of III: Again, by Fubini’s theorem, we have

III=Ψλ1r2|H|pλ1|H|λε-1dλdz1εΨλ1r2|H|p+εdz.

Estimate of IV: Similarly, we have

IV=Σλ1r2|f~η|λ1|f~η|1pλε-1dλdz1εΣλ1r2|f~η|1+εpdz.

It follows that (4.9) becomes

Φλ1,kr1|u|kp-q+ε|u|qdz𝐂εp-qΦλ1,kr2|u|kp-q+ε|u|qdz+λ1εΦλ1,kr1|u|kp-q|u|qdz+𝐂Ψλ1r2|H|p+εdz+𝐂Σλ1r2|f~η|1+εpdz,

where 𝐂=𝐂(n,N,p,Λ0,Λ1,δ).

Since there holds

Qr1(z0)ΩTΦλ1,kr1|u|kp-q+ε|u|qdzλ1εQr1(z0)ΩTΦλ1,kr1|u|kp-q|u|qdz,

λ1:=3η1p𝔹λ0 and 𝔹1, we obtain

Qr1(z0)ΩT|u|kp-q+ε|u|qdz𝐂εp-qQr2(z0)ΩT|u|kp-q+ε|u|qdz+𝐂𝔹λ0εQ2r(z0)ΩT|u|kp-q|u|qdz+𝐂Q2r(z0)ΩT|H|p+εdz+𝐂Q2r(z0)ΩT|f~η|1+εpdz.

Take ε0=ε0(n,N,p,Λ0,Λ1,δ) so that 𝐂ε0p-q=12. Then, for any ε(0,ε0), it follows that

Qr1(z0)ΩT|u|kp-q+ε|u|qdz12Qr2(z0)ΩT|u|kp-q+ε|u|qdz+𝐂𝔹λ0εQ2r(z0)ΩT|u|kp-q|u|qdz+𝐂Q2r(z0)ΩT|H|p+εdz+𝐂Q2r(z0)ΩT|f~η|1+εpdz.

Hence, applying Lemma 2.8, we get

Qr(z0)ΩT|u|kp-q+ε|u|qdzλ0εQ2r(z0)ΩT|u|kp-q|u|qdz+Q2r(z0)ΩT|H|p+εdz+Q2r(z0)ΩT|f~η|1+εpdz.

Let k to derive the desired estimate. This completes the proof.


Communicated by Frank Duzaar


Award Identifier / Grant number: NRF-2017R1A2B2003877

Award Identifier / Grant number: NRF-2019R1C1C1003844

Funding statement: S. Byun was supported by the National Research Foundation of Korea (NRF-2017R1A2B2003877). W. Kim and M. Lim were supported by the National Research Foundation of Korea (NRF-2019R1C1C1003844).

Acknowledgements

The authors are grateful to Karthik Adimurthi for valuable conversations and constant support throughout all this work. The authors wish to thank the referees for careful reading of the early version of this manuscript and providing many valuable suggestions and comments.

References

[1] E. Acerbi and G. Mingione, Gradient estimates for a class of parabolic systems, Duke Math. J. 136 (2007), no. 2, 285–320. 10.1215/S0012-7094-07-13623-8Search in Google Scholar

[2] K. Adimurthi, S.-S. Byun and W. Kim, Higher integrability for quasilinear parabolic equations with nondivergence data – with application, preprint (2020). Search in Google Scholar

[3] P. Baroni and J. Habermann, New gradient estimates for parabolic equations, Houston J. Math. 38 (2012), no. 3, 855–914. Search in Google Scholar

[4] V. Bögelein and F. Duzaar, Higher integrability for parabolic systems with non-standard growth and degenerate diffusions, Publ. Mat. 55 (2011), no. 1, 201–250. 10.5565/PUBLMAT_55111_10Search in Google Scholar

[5] V. Bögelein and M. Parviainen, Self-improving property of nonlinear higher order parabolic systems near the boundary, NoDEA Nonlinear Differential Equations Appl. 17 (2010), no. 1, 21–54. 10.1007/s00030-009-0038-5Search in Google Scholar

[6] V. Bögelein and C. Scheven, Higher integrability in parabolic obstacle problems, Forum Math. 24 (2012), no. 5, 931–972. 10.1515/form.2011.091Search in Google Scholar

[7] S.-S. Byun and Y. Cho, Nonlinear gradient estimates for parabolic obstacle problems in non-smooth domains, Manuscripta Math. 146 (2015), no. 3–4, 539–558. 10.1007/s00229-014-0707-5Search in Google Scholar

[8] S.-S. Byun, J. Ok and S. Ryu, Global gradient estimates for general nonlinear parabolic equations in nonsmooth domains, J. Differential Equations 254 (2013), no. 11, 4290–4326. 10.1016/j.jde.2013.03.004Search in Google Scholar

[9] E. DiBenedetto, Degenerate Parabolic Equations, Universitext, Springer, New York, 1993. 10.1007/978-1-4612-0895-2Search in Google Scholar

[10] F. W. Gehring, The Lp-integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265–277. 10.1007/BF02392268Search in Google Scholar

[11] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Ann. of Math. Stud. 105, Princeton University, Princeton, 1983. 10.1515/9781400881628Search in Google Scholar

[12] E. Giusti, Direct Methods in the Calculus of Variations, World Scientific, River Edge, 2003. 10.1142/5002Search in Google Scholar

[13] J. Kinnunen and J. L. Lewis, Higher integrability for parabolic systems of p-Laplacian type, Duke Math. J. 102 (2000), no. 2, 253–271. 10.1215/S0012-7094-00-10223-2Search in Google Scholar

[14] J. Kinnunen and J. L. Lewis, Very weak solutions of parabolic systems of p-Laplacian type, Ark. Mat. 40 (2002), no. 1, 105–132. 10.1007/BF02384505Search in Google Scholar

[15] T. Kuusi and G. Mingione, A nonlinear Stein theorem, Calc. Var. Partial Differential Equations 51 (2014), no. 1–2, 45–86. 10.1007/s00526-013-0666-9Search in Google Scholar

[16] M. Lee and J. Ok, Nonlinear Calderón–Zygmund theory involving dual data, Rev. Mat. Iberoam. 35 (2019), no. 4, 1053–1078. 10.4171/rmi/1078Search in Google Scholar

[17] N. G. Meyers and A. Elcrat, Some results on regularity for solutions of non-linear elliptic systems and quasi-regular functions, Duke Math. J. 42 (1975), 121–136. 10.1215/S0012-7094-75-04211-8Search in Google Scholar

[18] L. Nirenberg, On elliptic partial differential equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (3) 13 (1959),115–162. 10.1007/978-3-642-10926-3_1Search in Google Scholar

[19] M. Parviainen, Global gradient estimates for degenerate parabolic equations in nonsmooth domains, Ann. Mat. Pura Appl. (4) 188 (2009), no. 2, 333–358. 10.1007/s10231-008-0079-0Search in Google Scholar

[20] M. Parviainen, Reverse Hölder inequalities for singular parabolic equations near the boundary, J. Differential Equations 246 (2009), no. 2, 512–540. 10.1016/j.jde.2008.06.013Search in Google Scholar

Received: 2020-03-16
Revised: 2020-06-29
Published Online: 2020-08-06
Published in Print: 2020-11-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 13.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2020-0068/html
Scroll to top button