Startseite Mathematik Irreducible holonomy groups and first integrals for holomorphic foliations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Irreducible holonomy groups and first integrals for holomorphic foliations

  • Victor León ORCID logo , Mitchael Martelo und Bruno Scárdua EMAIL logo
Veröffentlicht/Copyright: 22. Februar 2020

Abstract

We study groups of germs of complex diffeomorphisms having a property called irreducibility. The notion is motivated by the similar property of the fundamental group of the complement of an irreducible hypersurface in the complex projective space. Natural examples of such groups of germ maps are given by holonomy groups and monodromy groups of integrable systems (foliations) under certain conditions. We prove some finiteness results for these groups extending previous results in [D. Cerveau and F. Loray, Un théorème de Frobenius singulier via l’arithmétique élémentaire, J. Number Theory 68 1998, 2, 217–228]. Applications are given to the framework of germs of holomorphic foliations. We prove the existence of first integrals under certain irreducibility or more general conditions on the tangent cone of the foliation after a punctual blow-up.


Communicated by Shigeharu Takayama


References

[1] C. Camacho, A. Lins Neto and P. Sad, Foliations with algebraic limit sets, Ann. of Math. (2) 136 (1992), 429–446. 10.2307/2946610Suche in Google Scholar

[2] D. Cerveau and F. Loray, Un théorème de Frobenius singulier via l’arithmétique élémentaire, J. Number Theory 68 (1998), no. 2, 217–228. 10.1006/jnth.1997.2202Suche in Google Scholar

[3] D. Cerveau and J.-F. Mattei, Formes intégrables holomorphes singulières, Astérisque 97, Société Mathématique de France, Paris, 1982. Suche in Google Scholar

[4] D. Cerveau and R. Moussu, Groupes d’automorphismes de (𝐂,0) et équations différentielles ydy+=0, Bull. Soc. Math. France 116 (1988), no. 4, 459–488. 10.24033/bsmf.2108Suche in Google Scholar

[5] D. Cerveau and B. Scárdua, Integrable deformations of local analytic fibrations with singularities, Ark. Mat. 56 (2018), no. 1, 33–44. 10.4310/ARKIV.2018.v56.n1.a3Suche in Google Scholar

[6] P. Deligne, Le groupe fondamental du complément d’une courbe plane n’ayant que des points doubles ordinaires est abélien (d’après W. Fulton), Bourbaki Seminar. Vol. 1979/80, Lecture Notes in Math. 842, Springer, Berlin (1981), 1–10. 10.1007/BFb0089924Suche in Google Scholar

[7] W. Fulton, On the fundamental group of the complement of a node curve, Ann. of Math. (2) 111 (1980), no. 2, 407–409. 10.2307/1971204Suche in Google Scholar

[8] A. Lins Neto, Construction of singular holomorphic vector fields and foliations in dimension two, J. Differential Geom. 26 (1987), no. 1, 1–31. 10.4310/jdg/1214441174Suche in Google Scholar

[9] B. Malgrange, Frobenius avec singularités. I. Codimension un, Inst. Hautes Études Sci. Publ. Math. (1976), no. 46, 163–173. 10.1007/BF02684321Suche in Google Scholar

[10] J.-F. Mattei and R. Moussu, Holonomie et intégrales premières, Ann. Sci. Éc. Norm. Supér. (4) 13 (1980), no. 4, 469–523. 10.24033/asens.1393Suche in Google Scholar

Received: 2019-05-14
Revised: 2019-10-28
Published Online: 2020-02-22
Published in Print: 2020-05-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 4.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2019-0129/pdf
Button zum nach oben scrollen