Abstract
We study the geometry of Lie groups G with a continuous Finsler metric, in presence of a subgroup K such that the metric is right-invariant for the action of K. We present a systematic study of the metric and geodesic structure of homogeneous spaces M obtained by the quotient
Funding source: Consejo Nacional de Investigaciones Científicas y Técnicas
Award Identifier / Grant number: PIP 2014 11220130100525
Funding source: Fondo para la Investigació́n Científica y Tecnológica
Award Identifier / Grant number: PICT 2015 1505
Funding statement: This research was supported by CONICET (PIP 2014 11220130100525) and ANPCyT (PICT 2015 1505).
Acknowledgements
The author would like to thank the anonymous referee for her/his valuable suggestions, which helped to improve the quality of the final version of this paper.
References
[1] J. C. Álvarez Paiva and G. Berck, What is wrong with the Hausdorff measure in Finsler spaces, Adv. Math. 204 (2006), no. 2, 647–663. 10.1016/j.aim.2005.06.007Suche in Google Scholar
[2] J. C. Álvarez Paiva and C. E. Durán, Isometric submersions of Finsler manifolds, Proc. Amer. Math. Soc. 129 (2001), no. 8, 2409–2417. 10.1090/S0002-9939-01-05910-XSuche in Google Scholar
[3] P. Andreev, Foundations of singular Finsler geometry, Eur. J. Math. 3 (2017), no. 4, 767–787. 10.1007/s40879-017-0169-xSuche in Google Scholar
[4] E. Andruchow and A. C. Antunez, Quotient p-Schatten metrics on spheres, Rev. Un. Mat. Argentina 58 (2017), no. 1, 21–36. Suche in Google Scholar
[5] E. Andruchow, E. Chiumiento and G. Larotonda, Homogeneous manifolds from noncommutative measure spaces, J. Math. Anal. Appl. 365 (2010), no. 2, 541–558. 10.1016/j.jmaa.2009.11.024Suche in Google Scholar
[6] E. Andruchow and G. Larotonda, Hopf–Rinow theorem in the Sato Grassmannian, J. Funct. Anal. 255 (2008), no. 7, 1692–1712. 10.1016/j.jfa.2008.07.027Suche in Google Scholar
[7] E. Andruchow, G. Larotonda and L. Recht, Finsler geometry and actions of the p-Schatten unitary groups, Trans. Amer. Math. Soc. 362 (2010), no. 1, 319–344. 10.1090/S0002-9947-09-04877-6Suche in Google Scholar
[8] E. Andruchow, G. Larotonda, L. Recht and A. Varela, The left-invariant metric in the general linear group, J. Geom. Phys. 86 (2014), 241–257. 10.1016/j.geomphys.2014.08.009Suche in Google Scholar
[9]
E. Andruchow and A. Varela,
Metrics in the sphere of a
[10] J. Antezana, G. Larotonda and A. Varela, Optimal paths for symmetric actions in the unitary group, Comm. Math. Phys. 328 (2014), no. 2, 481–497. 10.1007/s00220-014-2041-xSuche in Google Scholar
[11] C. J. Atkin, The Finsler geometry of groups of isometries of Hilbert space, J. Aust. Math. Soc. Ser. A 42 (1987), no. 2, 196–222. 10.1017/S1446788700028202Suche in Google Scholar
[12] C. J. Atkin, The Finsler geometry of certain covering groups of operator groups, Hokkaido Math. J. 18 (1989), no. 1, 45–77. 10.14492/hokmj/1381517780Suche in Google Scholar
[13] D. Bao, S.-S. Chern and Z. Shen, An Introduction to Riemann–Finsler Geometry, Grad. Texts in Math. 200, Springer, New York, 2000. 10.1007/978-1-4612-1268-3Suche in Google Scholar
[14] J. Becerra Guerrero and A. Rodríguez-Palacios, Transitivity of the norm on Banach spaces, Extracta Math. 17 (2002), no. 1, 1–58. Suche in Google Scholar
[15] P. Belkale, Quantum generalization of the Horn conjecture, J. Amer. Math. Soc. 21 (2008), no. 2, 365–408. 10.1090/S0894-0347-07-00584-XSuche in Google Scholar
[16] V. N. Berestovskiĭ, Homogeneous manifolds with an intrinsic metric. I (in Russian), Sibirsk. Mat. Zh. 29 (1988), no. 6, 17–29; translation in Siberian Math. J. 29 (1988), no. 6, 887–897. 10.1007/BF00972413Suche in Google Scholar
[17] V. N. Berestovskiĭ, Homogeneous manifolds with an intrinsic metric. II (in Russian), Sibirsk. Mat. Zh. 30 (1989), no. 2, 14–28, 225; translation in Siberian Math. J. 30 (1989), no. 2, 180–191. 10.1007/BF00971372Suche in Google Scholar
[18] M. J. Bergvelt and M. A. Guest, Actions of loop groups on harmonic maps, Trans. Amer. Math. Soc. 326 (1991), no. 2, 861–886. 10.1090/S0002-9947-1991-1062870-5Suche in Google Scholar
[19] R. Bhatia, Matrix Analysis, Grad. Texts in Math. 169, Springer, New York, 1997. 10.1007/978-1-4612-0653-8Suche in Google Scholar
[20] R. Bhatia and J. A. R. Holbrook, A softer, stronger Lidskiĭ theorem, Proc. Indian Acad. Sci. Math. Sci. 99 (1989), no. 1, 75–83. 10.1007/BF02874648Suche in Google Scholar
[21] R. Bhatia, T. Jain and Y. Lim, On the Bures–Wasserstein distance between positive definite matrices, Expo. Math. 37 (2019), no. 2, 165–191. 10.1016/j.exmath.2018.01.002Suche in Google Scholar
[22] M. Bialy and L. Polterovich, Geodesics of Hofer’s metric on the group of Hamiltonian diffeomorphisms, Duke Math. J. 76 (1994), no. 1, 273–292. 10.1215/S0012-7094-94-07609-6Suche in Google Scholar
[23] D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry, Grad. Stud. Math. 33, American Mathematical Society, Providence, 2001. 10.1090/gsm/033Suche in Google Scholar
[24] B. Clarke, The metric geometry of the manifold of Riemannian metrics over a closed manifold, Calc. Var. Partial Differential Equations 39 (2010), no. 3–4, 533–545. 10.1007/s00526-010-0323-5Suche in Google Scholar
[25] C. Conde and G. Larotonda, Manifolds of semi-negative curvature, Proc. Lond. Math. Soc. (3) 100 (2010), no. 3, 670–704. 10.1112/plms/pdp042Suche in Google Scholar
[26] G. Corach and A. L. Maestripieri, Positive operators on Hilbert space: A geometrical view point, Colloquium on Homology and Representation Theory (in Spanish) Boletin de la Academia Nacional de Ciencias, Córdoba (2000), 81–94. Suche in Google Scholar
[27] G. Corach, H. Porta and L. Recht, Geodesics and operator means in the space of positive operators, Internat. J. Math. 4 (1993), no. 2, 193–202. 10.1142/S0129167X9300011XSuche in Google Scholar
[28] P. de la Harpe, Classical Banach–Lie Algebras and Banach–Lie Groups of Operators in Hilbert Space, Lecture Notes in Math. 285, Springer, Berlin, 1972. 10.1007/BFb0071306Suche in Google Scholar
[29] J. Dittmann, Some properties of the Riemannian Bures metric on mixed states, J. Geom. Phys. 13 (1994), no. 2, 203–206. 10.1016/0393-0440(94)90027-2Suche in Google Scholar
[30]
C. E. Durán, L. E. Mata-Lorenzo and L. Recht,
Natural variational problems in the Grassmann manifold of a
[31]
C. E. Durán, L. E. Mata-Lorenzo and L. Recht,
Metric geometry in homogeneous spaces of the unitary group of a
[32]
C. E. Durán, L. E. Mata-Lorenzo and L. Recht,
Metric geometry in homogeneous spaces of the unitary group of a
[33] K. Fan and A. J. Hoffman, Some metric inequalities in the space of matrices, Proc. Amer. Math. Soc. 6 (1955), 111–116. 10.1090/S0002-9939-1955-0067841-7Suche in Google Scholar
[34] D. S. Freed, The geometry of loop groups, J. Differential Geom. 28 (1988), no. 2, 223–276. 10.4310/jdg/1214442279Suche in Google Scholar
[35] S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry, 3rd ed., Universitext, Springer, Berlin, 2004. 10.1007/978-3-642-18855-8Suche in Google Scholar
[36] H. Glöckner, Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups, J. Funct. Anal. 194 (2002), no. 2, 347–409. 10.1006/jfan.2002.3942Suche in Google Scholar
[37] M. Goldberg and E. G. Straus, Norm properties of C-numerical radii, Linear Algebra Appl. 24 (1979), 113–131. 10.1016/0024-3795(79)90152-6Suche in Google Scholar
[38] L. A. Harris and W. Kaup, Linear algebraic groups in infinite dimensions, Illinois J. Math. 21 (1977), no. 3, 666–674. 10.1215/ijm/1256049017Suche in Google Scholar
[39] H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Mod. Birkhäuser Class., Birkhäuser, Basel, 2011. 10.1007/978-3-0348-0104-1Suche in Google Scholar
[40] A. Kriegl and P. W. Michor, The Convenient Setting of Global Analysis, Math. Surveys Monogr. 53, American Mathematical Society, Providence, 1997. 10.1090/surv/053Suche in Google Scholar
[41]
A. Kriegl, P. W. Michor and A. Rainer,
An exotic zoo of diffeomorphism groups on
[42]
F. Lalonde and D. McDuff,
Hofer’s
[43] G. Larotonda, Nonpositive curvature: a geometrical approach to Hilbert–Schmidt operators, Differential Geom. Appl. 25 (2007), no. 6, 679–700. 10.1016/j.difgeo.2007.06.016Suche in Google Scholar
[44] G. Larotonda, Norm inequalities in operator ideals, J. Funct. Anal. 255 (2008), no. 11, 3208–3228. 10.1016/j.jfa.2008.06.028Suche in Google Scholar
[45] D. Latifi, Homogeneous geodesics in homogeneous Finsler spaces, J. Geom. Phys. 57 (2007), no. 5, 1421–1433. 10.1016/j.geomphys.2006.11.004Suche in Google Scholar
[46] T. Marquis and K.-H. Neeb, Half-Lie groups, Transform. Groups 23 (2018), no. 3, 801–840. 10.1007/s00031-018-9485-6Suche in Google Scholar
[47] J. H. McAlpin, Infinite Dimensional Manifolds and Morse Theory, ProQuest LLC, Ann Arbor, 1965; Thesis (Ph.D.)–Columbia University. Suche in Google Scholar
[48] A. C. G. Mennucci, On asymmetric distances, Anal. Geom. Metr. Spaces 1 (2013), 200–231. 10.2478/agms-2013-0004Suche in Google Scholar
[49] A. C. G. Mennucci and A. Duci, Banach-like distances and metric spaces of compact sets, SIAM J. Imaging Sci. 8 (2015), no. 1, 19–66. 10.1137/140972512Suche in Google Scholar
[50] P. W. Michor and D. Mumford, Riemannian geometries on spaces of plane curves, J. Eur. Math. Soc. (JEMS) 8 (2006), no. 1, 1–48. 10.4171/JEMS/37Suche in Google Scholar
[51] J. Milnor, Curvatures of left-invariant metrics on Lie groups, Adv. Math. 21 (1976), no. 3, 293–329. 10.1016/S0001-8708(76)80002-3Suche in Google Scholar
[52] G. D. Mostow, Some new decomposition theorems for semi-simple groups, Mem. Amer. Math. Soc. 14 (1955), 31–54. Suche in Google Scholar
[53] K.-H. Neeb, A Cartan–Hadamard theorem for Banach–Finsler manifolds, Geom. Dedicata 95 (2002), 115–156. 10.1023/A:1021221029301Suche in Google Scholar
[54] K.-H. Neeb, Monastir summer school: Infinite-dimensional Lie groups, Preprint 2433, TU Darmstadt, 2006. 10.4171/OWR/2006/55Suche in Google Scholar
[55] K.-H. Neeb, Towards a Lie theory of locally convex groups, Jpn. J. Math. 1 (2006), no. 2, 291–468. 10.1007/s11537-006-0606-ySuche in Google Scholar
[56] H. Porta and L. Recht, Minimality of geodesics in Grassmann manifolds, Proc. Amer. Math. Soc. 100 (1987), no. 3, 464–466. 10.1090/S0002-9939-1987-0891146-6Suche in Google Scholar
[57] W. Rudin, Functional Analysis, 2nd ed., Int. Ser. Pure Appl. Math., McGraw-Hill, New York, 1991. Suche in Google Scholar
[58] M. Takesaki, Theory of Operator Algebras. I, Springer, New York, 1979. 10.1007/978-1-4612-6188-9Suche in Google Scholar
[59] R. C. Thompson, Matrix type metric inequalities, Linear and Multilinear Algebra 5 (1977/78), no. 4, 303–319. 10.1080/03081087808817211Suche in Google Scholar
[60]
H. Upmeier,
Symmetric Banach Manifolds and Jordan
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Censored symmetric Lévy-type processes
- 𝐾-theory and immersions of spatial polygon spaces
- 𝐻𝑝 spaces for generalized Schrödinger operators and applications
- Commutative cocycles and stable bundles over surfaces
- Normal elements in the mod-𝑝 Iwasawa algebra over SL𝑛(ℤ𝑝): A computational approach
- Non-spectrality of self-affine measures on the three-dimensional Sierpinski gasket
- Plurisubharmonic functions on a neighborhood of a torus leaf of a certain class of foliations
- Discrete Littlewood–Paley–Stein characterization of multi-parameter local Hardy spaces
- Exceptional sets for sums of almost equal prime cubes
- Higher differentiability of solutions to a class of obstacle problems under non-standard growth conditions
- Beilinson–Flach elements, Stark units and 𝑝-adic iterated integrals
- On the bounded approximation property on subspaces of ℓp when 0 < p < 1 and related issues
- Refinement of the Chowla–Erdős method and linear independence of certain Lambert series
- Metric geometry of infinite-dimensional Lie groups and their homogeneous spaces
- On commutator Krylov transitive and commutator weakly transitive Abelian p-groups
Artikel in diesem Heft
- Frontmatter
- Censored symmetric Lévy-type processes
- 𝐾-theory and immersions of spatial polygon spaces
- 𝐻𝑝 spaces for generalized Schrödinger operators and applications
- Commutative cocycles and stable bundles over surfaces
- Normal elements in the mod-𝑝 Iwasawa algebra over SL𝑛(ℤ𝑝): A computational approach
- Non-spectrality of self-affine measures on the three-dimensional Sierpinski gasket
- Plurisubharmonic functions on a neighborhood of a torus leaf of a certain class of foliations
- Discrete Littlewood–Paley–Stein characterization of multi-parameter local Hardy spaces
- Exceptional sets for sums of almost equal prime cubes
- Higher differentiability of solutions to a class of obstacle problems under non-standard growth conditions
- Beilinson–Flach elements, Stark units and 𝑝-adic iterated integrals
- On the bounded approximation property on subspaces of ℓp when 0 < p < 1 and related issues
- Refinement of the Chowla–Erdős method and linear independence of certain Lambert series
- Metric geometry of infinite-dimensional Lie groups and their homogeneous spaces
- On commutator Krylov transitive and commutator weakly transitive Abelian p-groups