Startseite Refinement of the Chowla–Erdős method and linear independence of certain Lambert series
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Refinement of the Chowla–Erdős method and linear independence of certain Lambert series

  • Daniel Duverney und Yohei Tachiya EMAIL logo
Veröffentlicht/Copyright: 14. August 2019

Abstract

In this paper, we refine the method of Chowla and Erdős on the irrationality of Lambert series and study a necessary condition for the infinite series θ(n)/qn to be a rational number, where q is an integer with |q|>1 and θ is an arithmetic function with suitable divisibility and growth conditions. As applications of our main theorem, we give linear independence results for various kinds of Lambert series.

MSC 2010: 11J72

Communicated by Freydoon Shahidi


Award Identifier / Grant number: JP18K03201

Funding statement: This work was supported by JSPS KAKENHI Grant Number JP18K03201.

Acknowledgements

The authors would like to express their sincere gratitude to the referee for careful reading the manuscript and for giving useful comments.

References

[1] D. Bertrand, Theta functions and transcendence, Ramanujan J. 1 (1997), 339–350. 10.1023/A:1009749608672Suche in Google Scholar

[2] S. Chowla, On series of the Lambert type which assume irrational values for rational values of the argument, Proc. Natl. Inst. Sci. India Part A 13 (1947), 171–173. Suche in Google Scholar

[3] D. Duverney, Propriétés arithmétiques d’une série liée aux fonctions thêta, Acta Arith. 64 (1993), 175–188. 10.4064/aa-64-2-175-188Suche in Google Scholar

[4] D. Duverney, A propos de la série n=1xn/(qn-1), J. Théor. Nombres Bordeaux 8 (1996), 173–181. 10.5802/jtnb.163Suche in Google Scholar

[5] D. Duverney, Arithmetical functions and irrationality of Lambert series, Diophantine Analysis and Related Fields, AIP Conf. Proc. 1385, American Institute of Physics, Melville (2011), 5–16. 10.1063/1.3630035Suche in Google Scholar

[6] D. Duverney, K. Nishioka, K. Nishioka and I. Shiokawa, Transcendence of Jacobi’s theta series, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), 202–203. 10.3792/pjaa.72.202Suche in Google Scholar

[7] P. Erdős, On arithmetical properties of Lambert series, J. Indian Math. Soc. (N.S.) 12 (1948), 63–66. Suche in Google Scholar

[8] P. Erdős, On the irrationality of certain series, Math. Student 36 (1969), 222–226. Suche in Google Scholar

[9] P. Erdős and R. L. Graham, Old and New Problems and Results in Combinatorial Number Theory, Monogr. Enseign. Math. 28, Université de Genève, Genève, 1980. Suche in Google Scholar

[10] F. Luca and Y. Tachiya, Irrationality of Lambert series associated with a periodic sequence, Int. J. Number Theory 10 (2014), 623–636. 10.1142/S1793042113501121Suche in Google Scholar

[11] F. Luca and Y. Tachiya, Linear independence of certain Lambert series, Proc. Amer. Math. Soc. 142 (2014), 3411–3419. 10.1090/S0002-9939-2014-12102-2Suche in Google Scholar

[12] F. Luca and Y. Tachiya, Linear independence results for the values of divisor functions series, RIMS Kôkyûroku No. 2014, http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/2014.html. Suche in Google Scholar

[13] Y. V. Nesterenko, Algebraic Independence, Tata Institute of Fundamental Research, New Delhi, 2009. Suche in Google Scholar

[14] J. Vandehey, On an incomplete argument of Erdős on the irrationality of Lambert series, Integers 13 (2013), Paper No. A 58. 10.1515/9783110298161.843Suche in Google Scholar

Received: 2018-12-13
Revised: 2019-06-04
Published Online: 2019-08-14
Published in Print: 2019-11-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2018-0299/html
Button zum nach oben scrollen