Startseite Unramified Whittaker functions for certain Brylinski–Deligne covering groups
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Unramified Whittaker functions for certain Brylinski–Deligne covering groups

  • Yuanqing Cai ORCID logo EMAIL logo
Veröffentlicht/Copyright: 1. Oktober 2019

Abstract

For a Brylinski–Deligne covering group of a general linear group, we calculate some values of unramified Whittaker functions for certain representations that are analogous to the theta representations.

MSC 2010: 11F70; 22E50; 11F68

Communicated by Freydoon Shahidi


Award Identifier / Grant number: 637912

Award Identifier / Grant number: 19F19019

Funding statement: This research was supported by the ERC, StG grant number 637912 and JSPS KAKENHI, grant number 19F19019.

Acknowledgements

The author would like to thank Solomon Friedberg and Eyal Kaplan for explaining to him that his original approach did not work. The author is indebted to the referee for suggesting a proof of Lemma 4.3, and very detailed and helpful comments for an earlier version of the paper. The author would also like to thank the Institute for Mathematical Sciences at the National University of Singapore, where part of this work was done during a visit from December 2018 to January 2019.

References

[1] D. Ban and C. Jantzen, The Langlands quotient theorem for finite central extensions of p-adic groups, Glas. Mat. Ser. III 48(68) (2013), no. 2, 313–334. 10.3336/gm.48.2.07Suche in Google Scholar

[2] I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive p-adic groups. I, Ann. Sci. Éc. Norm. Supér. (4) 10 (1977), no. 4, 441–472. 10.24033/asens.1333Suche in Google Scholar

[3] B. Brubaker, D. Bump and S. Friedberg, Twisted Weyl group multiple Dirichlet series: The stable case, Eisenstein Series and Applications, Progr. Math. 258, Birkhäuser, Boston (2008), 1–26. 10.1007/978-0-8176-4639-4_1Suche in Google Scholar

[4] B. Brubaker, D. Bump and S. Friedberg, Weyl group multiple Dirichlet series, Eisenstein series and crystal bases, Ann. of Math. (2) 173 (2011), no. 2, 1081–1120. 10.4007/annals.2011.173.2.13Suche in Google Scholar

[5] J.-L. Brylinski and P. Deligne, Central extensions of reductive groups by 𝐊2, Publ. Math. Inst. Hautes Études Sci. (2001), no. 94, 5–85. 10.1007/s10240-001-8192-2Suche in Google Scholar

[6] D. Bump, Lie Groups, 2nd ed., Grad. Texts in Math. 225, Springer, New York, 2013. 10.1007/978-1-4614-8024-2Suche in Google Scholar

[7] W. Casselman and J. Shalika, The unramified principal series of p-adic groups. II. The Whittaker function, Compos. Math. 41 (1980), no. 2, 207–231. Suche in Google Scholar

[8] G. Chinta and P. E. Gunnells, Constructing Weyl group multiple Dirichlet series, J. Amer. Math. Soc. 23 (2010), no. 1, 189–215. 10.1090/S0894-0347-09-00641-9Suche in Google Scholar

[9] G. Chinta and O. Offen, A metaplectic Casselman–Shalika formula for GLr, Amer. J. Math. 135 (2013), no. 2, 403–441. 10.1353/ajm.2013.0013Suche in Google Scholar

[10] M. Finkelberg and S. Lysenko, Twisted geometric Satake equivalence, J. Inst. Math. Jussieu 9 (2010), no. 4, 719–739. 10.1017/S1474748010000034Suche in Google Scholar

[11] S. Friedberg and L. Zhang, Eisenstein series on covers of odd orthogonal groups, Amer. J. Math. 137 (2015), no. 4, 953–1011. 10.1353/ajm.2015.0031Suche in Google Scholar

[12] W. T. Gan and F. Gao, The Langlands–Weissman program for Brylinski–Deligne extensions, Asterisque (2018) 398, 187–275. 10.24033/ast.1047Suche in Google Scholar

[13] F. Gao, Distinguished theta representations for certain covering groups, Pacific J. Math. 290 (2017), no. 2, 333–379. 10.2140/pjm.2017.290.333Suche in Google Scholar

[14] F. Gao, Generalized Bump–Hoffstein conjecture for coverings of the general linear groups, J. Algebra 499 (2018), 183–228. 10.1016/j.jalgebra.2017.12.002Suche in Google Scholar

[15] F. Gao, Hecke L-functions and Fourier coefficients of covering Eisenstein series, preprint (2018). Suche in Google Scholar

[16] F. Gao, The Langlands–Shahidi L-functions for Brylinski–Deligne extensions, Amer. J. Math. 140 (2018), no. 1, 83–137. 10.1353/ajm.2018.0001Suche in Google Scholar

[17] E. Kaplan, Doubling constructions and tensor product L-functions: Coverings of the symplectic group, preprint (2019), https://arxiv.org/abs/1902.00880. Suche in Google Scholar

[18] D. A. Kazhdan and S. J. Patterson, Metaplectic forms, Inst. Hautes Études Sci. Publ. Math. (1984), no. 59, 35–142. 10.1007/BF02698770Suche in Google Scholar

[19] P. J. McNamara, Metaplectic Whittaker functions and crystal bases, Duke Math. J. 156 (2011), no. 1, 1–31. 10.1215/00127094-2010-064Suche in Google Scholar

[20] P. J. McNamara, Principal series representations of metaplectic groups over local fields, Multiple Dirichlet series, L-functions and automorphic forms, Progr. Math. 300, Birkhäuser/Springer, New York (2012), 299–327. 10.1007/978-0-8176-8334-4_13Suche in Google Scholar

[21] P. J. McNamara, The metaplectic Casselman–Shalika formula, Trans. Amer. Math. Soc. 368 (2016), no. 4, 2913–2937. 10.1090/tran/6597Suche in Google Scholar

[22] R. C. Reich, Twisted geometric Satake equivalence via gerbes on the factorizable Grassmannian, Represent. Theory 16 (2012), 345–449. 10.1090/S1088-4165-2012-00420-4Suche in Google Scholar

[23] T. Suzuki, Metaplectic Eisenstein series and the Bump–Hoffstein conjecture, Duke Math. J. 90 (1997), no. 3, 577–630. 10.1215/S0012-7094-97-09016-5Suche in Google Scholar

[24] T. Suzuki, Distinguished representations of metaplectic groups, Amer. J. Math. 120 (1998), no. 4, 723–755. 10.1353/ajm.1998.0032Suche in Google Scholar

[25] M. H. Weissman, Metaplectic tori over local fields, Pacific J. Math. 241 (2009), no. 1, 169–200. 10.2140/pjm.2009.241.169Suche in Google Scholar

Received: 2019-04-10
Revised: 2019-09-03
Published Online: 2019-10-01
Published in Print: 2020-01-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2019-0094/html
Button zum nach oben scrollen