Startseite Schneider–Siegel theorem for a family of values of a harmonic weak Maass form at Hecke orbits
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Schneider–Siegel theorem for a family of values of a harmonic weak Maass form at Hecke orbits

  • Dohoon Choi und Subong Lim ORCID logo EMAIL logo
Veröffentlicht/Copyright: 13. September 2019

Abstract

Let j(z) be the modular j-invariant function. Let τ be an algebraic number in the complex upper half plane . It was proved by Schneider and Siegel that if τ is not a CM point, i.e., [(τ):]2, then j(τ) is transcendental. Let f be a harmonic weak Maass form of weight 0 on Γ0(N). In this paper, we consider an extension of the results of Schneider and Siegel to a family of values of f on Hecke orbits of τ. For a positive integer m, let Tm denote the m-th Hecke operator. Suppose that the coefficients of the principal part of f at the cusp i are algebraic, and that f has its poles only at cusps equivalent to i. We prove, under a mild assumption on f, that, for any fixed τ, if N is a prime such that N23 and N{23,29,31,41,47,59,71}, then f(Tm.τ) are transcendental for infinitely many positive integers m prime to N.

MSC 2010: 11F03; 11F25

Communicated by Jan Bruinier


Acknowledgements

The authors appreciate the referee for helpful comments.

References

[1] A. O. L. Atkin and J. Lehner, Hecke operators on Γ0(m), Math. Ann. 185 (1970), 134–160. 10.1007/BF01359701Suche in Google Scholar

[2] M. H. Baker, Torsion points on modular curves, Invent. Math. 140 (2000), no. 3, 487–509. 10.1007/s002220050370Suche in Google Scholar

[3] R. E. Borcherds, Automorphic forms with singularities on Grassmannians, Invent. Math. 132 (1998), no. 3, 491–562. 10.1007/s002220050232Suche in Google Scholar

[4] J. H. Bruinier and J. Funke, On two geometric theta lifts, Duke Math. J. 125 (2004), no. 1, 45–90. 10.1215/S0012-7094-04-12513-8Suche in Google Scholar

[5] J. H. Bruinier and K. Ono, Heegner divisors, L-functions and harmonic weak Maass forms, Ann. of Math. (2) 172 (2010), no. 3, 2135–2181. 10.4007/annals.2010.172.2135Suche in Google Scholar

[6] J. H. Bruinier, K. Ono and R. C. Rhoades, Differential operators for harmonic weak Maass forms and the vanishing of Hecke eigenvalues, Math. Ann. 342 (2008), no. 3, 673–693. 10.1007/s00208-008-0252-1Suche in Google Scholar

[7] D. Choi, Poincaré series and the divisors of modular forms, Proc. Amer. Math. Soc. 138 (2010), no. 10, 3393–3403. 10.1090/S0002-9939-2010-10133-8Suche in Google Scholar

[8] R. Coleman, B. Kaskel and K. A. Ribet, Torsion points on X0(N), Automorphic Forms, Automorphic Representations, and Arithmetic (Fort Worth 1996), Proc. Sympos. Pure Math. 66, American Mathematical Society, Providence (1999), 27–49. 10.1090/pspum/066.1/1703745Suche in Google Scholar

[9] P. A. Griffiths, Introduction to Algebraic Curves, Transl. Math. Monogr. 76, American Mathematical Society, Providence, 1989. 10.1090/mmono/076Suche in Google Scholar

[10] L. Kronecker, Über die algebraisch auflösbaren Gleichungen, Berlin K. Akad. Wiss. (1853), 365–374; Collected works volume 4. Suche in Google Scholar

[11] K. Ono, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-series, CBMS Reg. Conf. Ser. Math. 102, American Mathematical Society, Providence, 2004. 10.1090/cbms/102Suche in Google Scholar

[12] K. Ono, Unearthing the visions of a master: Harmonic Maass forms and number theory, Current Develop. Math. 2008 (2009), 347–454. 10.4310/CDM.2008.v2008.n1.a5Suche in Google Scholar

[13] M. Raynaud, Courbes sur une variété abélienne et points de torsion, Invent. Math. 71 (1983), no. 1, 207–233. 10.1007/BF01393342Suche in Google Scholar

[14] M. Raynaud, Sous-variétés d’une variété abélienne et points de torsion, Arithmetic and Geometry. Vol. I, Progr. Math. 35, Birkhäuser, Boston (1983), 327–352. 10.1007/978-1-4757-9284-3_14Suche in Google Scholar

[15] T. Schneider, Arithmetische Untersuchungen elliptischer Integrale, Math. Ann. 113 (1937), no. 1, 1–13. 10.1007/BF01571618Suche in Google Scholar

[16] A. J. Scholl, Fourier coefficients of Eisenstein series on noncongruence subgroups, Math. Proc. Cambridge Philos. Soc. 99 (1986), no. 1, 11–17. 10.1017/S0305004100063866Suche in Google Scholar

[17] C. L. Siegel, Über die Perioden elliptischer Funktionen, J. Reine Angew. Math. 167 (1932), 62–69. 10.1007/978-3-662-28697-5_17Suche in Google Scholar

[18] H. Weber, Theorie der Abel’schen Zahlkörper, Acta Math. 8 (1886), no. 1, 193–263. 10.1007/BF02417089Suche in Google Scholar

Received: 2018-12-04
Revised: 2019-05-26
Published Online: 2019-09-13
Published in Print: 2020-01-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 19.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2018-0295/html
Button zum nach oben scrollen