Startseite Mathematik The Dual Baer Criterion for non-perfect rings
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The Dual Baer Criterion for non-perfect rings

  • Jan Trlifaj ORCID logo EMAIL logo
Veröffentlicht/Copyright: 17. Januar 2020

Abstract

Baer’s Criterion for Injectivity is a useful tool of the theory of modules. Its dual version (DBC) is known to hold for all right perfect rings, but its validity for the non-right perfect ones is a complex problem (first formulated by C. Faith [Algebra. II. Ring Theory, Springer, Berlin, 1976]). Recently, it has turned out that there are two classes of non-right perfect rings: (1) those for which DBC fails in ZFC, and (2) those for which DBC is independent of ZFC. First examples of rings in the latter class were constructed in [J. Trlifaj, Faith’s problem on R-projectivity is undecidable, Proc. Amer. Math. Soc. 147 2019, 2, 497–504]; here, we show that this class contains all small semiartinian von Neumann regular rings with primitive factors artinian.


Dedicated to Roger and Sylvia Wiegand, in honor of their 150th birthday



Communicated by Manfred Droste


Award Identifier / Grant number: GACR 17-23112S

Funding statement: Research supported by GAČR 17-23112S.

Acknowledgements

The author thanks the referee for suggesting several simplifications of the presentation. He also thanks Roger Wiegand for discussions related to the commutative noetherian case (cf. Remark 2.5).

References

[1] H. Alhilali, Y. Ibrahim, G. Puninski and M. Yousif, When R is a testing module for projectivity?, J. Algebra 484 (2017), 198–206. 10.1016/j.jalgebra.2017.04.010Suche in Google Scholar

[2] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, 2nd ed., Grad. Texts in Math. 13, Springer, New York, 1992. 10.1007/978-1-4612-4418-9Suche in Google Scholar

[3] R. Baer, Abelian groups that are direct summands of every containing abelian group, Bull. Amer. Math. Soc. 46 (1940), 800–806. 10.1090/S0002-9904-1940-07306-9Suche in Google Scholar

[4] P. C. Eklof and A. H. Mekler, Almost Free Modules, 2nd ed., North-Holland Math. Libr. 65, North-Holland, Amsterdam, 2002. 10.1016/S0924-6509(02)80006-XSuche in Google Scholar

[5] P. C. Eklof and S. Shelah, On Whitehead modules, J. Algebra 142 (1991), no. 2, 492–510. 10.1016/S1570-7954(03)80064-5Suche in Google Scholar

[6] C. Faith, Algebra. II. Ring Theory, Springer, Berlin, 1976. 10.1007/978-3-642-65321-6Suche in Google Scholar

[7] R. Göbel and J. Trlifaj, Approximations and Endomorphism Algebras of Modules, 2nd ed., Walter de Gruyter, Berlin, 2012. 10.1515/9783110218114Suche in Google Scholar

[8] K. R. Goodearl, von Neumann Regular Rings, 2nd ed., Robert E. Krieger, Malabar, 1991. Suche in Google Scholar

[9] R. M. Hamsher, Commutative, noetherian rings over which every module has a maximal submodule, Proc. Amer. Math. Soc. 17 (1966), 1471–1472. 10.1090/S0002-9939-1966-0200303-XSuche in Google Scholar

[10] R. M. Hamsher, Commutative rings over which every module has a maximal submodule, Proc. Amer. Math. Soc. 18 (1967), 1133–1137. 10.1090/S0002-9939-1967-0217059-8Suche in Google Scholar

[11] R. B. Jensen, The fine structure of the constructible hierarchy, Ann. Math. Logic 4 (1972), 229–308. 10.1016/0003-4843(72)90001-0Suche in Google Scholar

[12] R. D. Ketkar and N. Vanaja, R-projective modules over a semiperfect ring, Canad. Math. Bull. 24 (1981), no. 3, 365–367. 10.4153/CMB-1981-055-xSuche in Google Scholar

[13] P. Růžička, J. Trlifaj and J. Žemlička, Criteria of steadiness, Abelian Groups, Module Theory, and Topology (Padua 1997), Lecture Notes Pure Appl. Math. 201, Dekker, New York (1998), 359–371. 10.1201/9780429187605-31Suche in Google Scholar

[14] F. O. Sandomierski, Relative injectivity and projectivity, ProQuest LLC, Ann Arbor, 1964; Thesis (Ph.D.)–The Pennsylvania State University. Suche in Google Scholar

[15] J. Trlifaj, Nonperfect rings and a theorem of Eklof and Shelah, Comment. Math. Univ. Carolin. 32 (1991), no. 1, 27–32. Suche in Google Scholar

[16] J. Trlifaj, Whitehead test modules, Trans. Amer. Math. Soc. 348 (1996), no. 4, 1521–1554. 10.1090/S0002-9947-96-01494-8Suche in Google Scholar

[17] J. Trlifaj, Uniform modules, Γ-invariants, and Ziegler spectra of regular rings, Abelian Groups and Modules (Dublin 1998), Trends Math., Birkhäuser, Basel (1999), 327–340. 10.1007/978-3-0348-7591-2_27Suche in Google Scholar

[18] J. Trlifaj, Faith’s problem on R-projectivity is undecidable, Proc. Amer. Math. Soc. 147 (2019), no. 2, 497–504. 10.1090/proc/14209Suche in Google Scholar

Received: 2019-01-30
Revised: 2019-08-15
Published Online: 2020-01-17
Published in Print: 2020-05-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 4.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2019-0028/pdf
Button zum nach oben scrollen