Abstract
We explore the graded-formality and filtered-formality properties of finitely generated groups by studying the various Lie algebras over a field of characteristic 0 attached to such groups, including the Malcev Lie algebra, the associated graded Lie algebra, the holonomy Lie algebra, and the Chen Lie algebra. We explain how these notions behave with respect to split injections, coproducts, direct products, as well as field extensions, and how they are inherited by solvable and nilpotent quotients. A key tool in this analysis is the 1-minimal model of the group, and the way this model relates to the aforementioned Lie algebras. We illustrate our approach with examples drawn from a variety of group-theoretic and topological contexts, such as finitely generated torsion-free nilpotent groups, link groups, and fundamental groups of Seifert fibered manifolds.
Funding source: National Science Foundation
Award Identifier / Grant number: DMS-1010298
Funding source: National Security Agency
Award Identifier / Grant number: H98230-13-1-0225
Funding source: Simons Foundation
Award Identifier / Grant number: 354156
Funding statement: The first author was supported in part by the National Science Foundation (grant DMS-1010298), the National Security Agency (grant H98230-13-1-0225), and the Simons Foundation (collaboration grant for mathematicians 354156).
Acknowledgements
We wish to thank Yves Cornulier, Ştefan Papadima, and Richard Porter for several useful comments regarding this work.
References
[1] L. Bartholdi, B. Enriquez, P. Etingof and E. Rains, Groups and Lie algebras corresponding to the Yang–Baxter equations, J. Algebra 305 (2006), no. 2, 742–764. 10.1016/j.jalgebra.2005.12.006Suche in Google Scholar
[2] B. Berceanu, D. A. Măcinic, C. Papadima and C. R. Popescu, On the geometry and topology of partial configuration spaces of Riemann surfaces, Algebr. Geom. Topol. 17 (2017), no. 2, 1163–1188. 10.2140/agt.2017.17.1163Suche in Google Scholar
[3] B. Berceanu and C. Papadima, Cohomologically generic 2-complexes and 3-dimensional Poincaré complexes, Math. Ann. 298 (1994), no. 3, 457–480. 10.1007/BF01459745Suche in Google Scholar
[4] R. Bezrukavnikov, Koszul DG-algebras arising from configuration spaces, Geom. Funct. Anal. 4 (1994), no. 2, 119–135. 10.1007/BF01895836Suche in Google Scholar
[5] C. Bibby and J. Hilburn, Quadratic-linear duality and rational homotopy theory of chordal arrangements, Algebr. Geom. Topol. 16 (2016), no. 5, 2637–2661. 10.2140/agt.2016.16.2637Suche in Google Scholar
[6] R. Body, M. Mimura, H. Shiga and D. Sullivan, p-universal spaces and rational homotopy types, Comment. Math. Helv. 73 (1998), no. 3, 427–442. 10.1007/s000140050063Suche in Google Scholar
[7] D. Calaque, B. Enriquez and P. Etingof, Universal KZB equations: The elliptic case, Algebra, Arithmetic, and Geometry: In Honor of Yu. I. Manin. Vol. I, Progr. Math. 269, Birkhäuser, Boston (2009), 165–266. 10.1007/978-0-8176-4745-2_5Suche in Google Scholar
[8] J. A. Carlson and D. Toledo, Quadratic presentations and nilpotent Kähler groups, J. Geom. Anal. 5 (1995), no. 3, 359–377. 10.1007/BF02921801Suche in Google Scholar
[9] B. Cenkl and R. Porter, Mal’cev’s completion of a group and differential forms, J. Differential Geom. 15 (1980), no. 4, 531–542. 10.4310/jdg/1214435841Suche in Google Scholar
[10] B. Cenkl and R. Porter, Nilmanifolds and associated Lie algebras over the integers, Pacific J. Math. 193 (2000), no. 1, 5–29. 10.2140/pjm.2000.193.5Suche in Google Scholar
[11] K.-T. Chen, Integration in free groups, Ann. of Math. (2) 54 (1951), 147–162. 10.2307/1969316Suche in Google Scholar
[12] K.-T. Chen, Iterated integrals of differential forms and loop space homology, Ann. of Math. (2) 97 (1973), 217–246. 10.2307/1970846Suche in Google Scholar
[13] Y. Cornulier, Gradings on Lie algebras, systolic growth, and cohopfian properties of nilpotent groups, Bull. Soc. Math. France 144 (2016), no. 4, 693–744. 10.24033/bsmf.2725Suche in Google Scholar
[14] K. Dekimpe and K. B. Lee, Expanding maps on infra-nilmanifolds of homogeneous type, Trans. Amer. Math. Soc. 355 (2003), no. 3, 1067–1077. 10.1090/S0002-9947-02-03084-2Suche in Google Scholar
[15] P. Deligne, P. Griffiths, J. Morgan and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), no. 3, 245–274. 10.1007/BF01389853Suche in Google Scholar
[16] A. Dimca, C. Papadima and A. I. Suciu, Topology and geometry of cohomology jump loci, Duke Math. J. 148 (2009), no. 3, 405–457. 10.1215/00127094-2009-030Suche in Google Scholar
[17]
V. G. Drinfel’d,
On quasitriangular quasi-Hopf algebras and on a group that is closely connected with
[18] W. G. Dwyer, Homology, Massey products and maps between groups, J. Pure Appl. Algebra 6 (1975), no. 2, 177–190. 10.1016/0022-4049(75)90006-7Suche in Google Scholar
[19] T. Ekedahl and S. Merkulov, Grothendieck–Teichmüller group in algebra, geometry and quantization: A survey, preprint (2011). Suche in Google Scholar
[20] B. Enriquez, Elliptic associators, Selecta Math. (N. S.) 20 (2014), no. 2, 491–584. 10.1007/s00029-013-0137-3Suche in Google Scholar
[21] M. Falk and R. Randell, The lower central series of a fiber-type arrangement, Invent. Math. 82 (1985), no. 1, 77–88. 10.1007/BF01394780Suche in Google Scholar
[22] Y. Félix, S. Halperin and J.-C. Thomas, Rational Homotopy Theory, Grad. Texts in Math. 205, Springer, New York, 2001. 10.1007/978-1-4613-0105-9Suche in Google Scholar
[23] Y. Félix, S. Halperin and J.-C. Thomas, Rational Homotopy Theory. II, World Scientific, Hackensack, 2015. 10.1142/9473Suche in Google Scholar
[24] Y. Félix, J. Oprea and D. Tanré, Algebraic Models in Geometry, Oxf. Grad. Texts Math. 17, Oxford University, Oxford, 2008. 10.1093/oso/9780199206513.001.0001Suche in Google Scholar
[25] R. Fenn and D. Sjerve, Massey products and lower central series of free groups, Canad. J. Math. 39 (1987), no. 2, 322–337. 10.4153/CJM-1987-015-5Suche in Google Scholar
[26] M. Fernández and V. Muñoz, Formality of Donaldson submanifolds, Math. Z. 250 (2005), no. 1, 149–175. 10.1007/s00209-004-0747-8Suche in Google Scholar
[27] M. Freedman, R. Hain and P. Teichner, Betti number estimates for nilpotent groups, Fields Medallists’ Lectures, World Sci. Ser. 20th Century Math. 5, World Scientific, River Edge (1997), 413–434. 10.1142/9789812385215_0045Suche in Google Scholar
[28] R. Fröberg, Koszul algebras, Advances in Commutative Ring Theory (Fez 1997), Lecture Notes Pure Appl. Math. 205, Dekker, New York (1999), 337–350. 10.1201/9781003419815-21Suche in Google Scholar
[29] P. Griffiths and J. Morgan, Rational Homotopy Theory and Differential Forms, 2nd ed., Progr. Math. 16, Springer, New York, 2013. 10.1007/978-1-4614-8468-4Suche in Google Scholar
[30] R. Hain, Infinitesimal presentations of the Torelli groups, J. Amer. Math. Soc. 10 (1997), no. 3, 597–651. 10.1090/S0894-0347-97-00235-XSuche in Google Scholar
[31] R. Hain, Genus 3 mapping class groups are not Kähler, J. Topol. 8 (2015), no. 1, 213–246. 10.1112/jtopol/jtu020Suche in Google Scholar
[32] R. M. Hain, Iterated integrals, intersection theory and link groups, Topology 24 (1985), no. 1, 45–66. 10.1016/0040-9383(85)90025-4Suche in Google Scholar
[33] S. Halperin and J. Stasheff, Obstructions to homotopy equivalences, Adv. Math. 32 (1979), no. 3, 233–279. 10.1016/0001-8708(79)90043-4Suche in Google Scholar
[34] K. Hasegawa, Minimal models of nilmanifolds, Proc. Amer. Math. Soc. 106 (1989), no. 1, 65–71. 10.1090/S0002-9939-1989-0946638-XSuche in Google Scholar
[35] P. J. Hilton and U. Stammbach, A Course in Homological Algebra, 2nd ed., Grad. Texts in Math. 4, Springer, New York, 1997. 10.1007/978-1-4419-8566-8Suche in Google Scholar
[36] K. Igusa and K. E. Orr, Links, pictures and the homology of nilpotent groups, Topology 40 (2001), no. 6, 1125–1166. 10.1016/S0040-9383(00)00002-1Suche in Google Scholar
[37] R. W. Johnson, Homogeneous Lie algebras and expanding automorphisms, Proc. Amer. Math. Soc. 48 (1975), 292–296. 10.1090/S0002-9939-1975-0374217-4Suche in Google Scholar
[38] H. Kasuya, Singularity of the varieties of representations of lattices in solvable Lie groups, J. Topol. Anal. 8 (2016), no. 2, 273–285. 10.1142/S1793525316500114Suche in Google Scholar
[39] T. Kohno, On the holonomy Lie algebra and the nilpotent completion of the fundamental group of the complement of hypersurfaces, Nagoya Math. J. 92 (1983), 21–37. 10.1017/S0027763000020547Suche in Google Scholar
[40] J. Labute, Fabulous pro-p-groups, Ann. Sci. Math. Québec 32 (2008), no. 2, 189–197. Suche in Google Scholar
[41] L. A. Lambe, Two exact sequences in rational homotopy theory relating cup products and commutators, Proc. Amer. Math. Soc. 96 (1986), no. 2, 360–364. 10.1090/S0002-9939-1986-0818472-XSuche in Google Scholar
[42] L. A. Lambe and S. B. Priddy, Cohomology of nilmanifolds and torsion-free, nilpotent groups, Trans. Amer. Math. Soc. 273 (1982), no. 1, 39–55. 10.1090/S0002-9947-1982-0664028-2Suche in Google Scholar
[43] M. Lazard, Sur les groupes nilpotents et les anneaux de Lie, Ann. Sci. Éc. Norm. Supér. (3) 71 (1954), 101–190. 10.24033/asens.1021Suche in Google Scholar
[44] A. Lazarev and M. Markl, Disconnected rational homotopy theory, Adv. Math. 283 (2015), 303–361. 10.1016/j.aim.2015.07.009Suche in Google Scholar
[45] P. Lee, The pure virtual braid group is quadratic, Selecta Math. (N. S.) 19 (2013), no. 2, 461–508. 10.1007/s00029-012-0107-1Suche in Google Scholar
[46] G. Leger, Derivations of Lie algebras. III, Duke Math. J. 30 (1963), 637–645. 10.1215/S0012-7094-63-03067-9Suche in Google Scholar
[47] A. I. Lichtman, On Lie algebras of free products of groups, J. Pure Appl. Algebra 18 (1980), no. 1, 67–74. 10.1016/0022-4049(80)90117-6Suche in Google Scholar
[48] C. Löfwall, On the subalgebra generated by the one-dimensional elements in the Yoneda Ext-algebra, Algebra, Algebraic Topology and Their Interactions (Stockholm 1983), Lecture Notes in Math. 1183, Springer, Berlin (1986), 291–338. 10.1007/BFb0075468Suche in Google Scholar
[49]
M. Maassarani,
Sur certains espaces de configurations associés aux sous-groupes finis de
[50] A. D. Măcinic, Cohomology rings and formality properties of nilpotent groups, J. Pure Appl. Algebra 214 (2010), no. 10, 1818–1826. 10.1016/j.jpaa.2009.12.025Suche in Google Scholar
[51] W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations, Interscience, New York, 1966. Suche in Google Scholar
[52] A. I. Malcev, On a class of homogeneous spaces, Amer. Math. Soc. Transl. 1951 (1951), no. 39, 33. Suche in Google Scholar
[53] M. Markl and C. Papadima, Homotopy Lie algebras and fundamental groups via deformation theory, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 905–935. 10.5802/aif.1315Suche in Google Scholar
[54] W. S. Massey, Higher order linking numbers, J. Knot Theory Ramifications 7 (1998), no. 3, 393–414. 10.1142/S0218216598000206Suche in Google Scholar
[55] G. Massuyeau, Infinitesimal Morita homomorphisms and the tree-level of the LMO invariant, Bull. Soc. Math. France 140 (2012), no. 1, 101–161. 10.24033/bsmf.2625Suche in Google Scholar
[56]
D. Matei and A. I. Suciu,
Homotopy types of complements of 2-arrangements in
[57] J. W. Morgan, The algebraic topology of smooth algebraic varieties, Inst. Hautes Études Sci. Publ. Math. (1978), no. 48, 137–204. 10.1007/BF02684316Suche in Google Scholar
[58] J. Neisendorfer and T. Miller, Formal and coformal spaces, Illinois J. Math. 22 (1978), no. 4, 565–580. 10.1215/ijm/1256048467Suche in Google Scholar
[59] S. Papadima and A. I. Suciu, Chen Lie algebras, Int. Math. Res. Not. IMRN 2004 (2004), no. 21, 1057–1086. 10.1155/S1073792804132017Suche in Google Scholar
[60] S. Papadima and A. I. Suciu, Geometric and algebraic aspects of 1-formality, Bull. Math. Soc. Sci. Math. Roumanie (N. S.) 52(100) (2009), no. 3, 355–375. Suche in Google Scholar
[61] S. Papadima and A. I. Suciu, Non-abelian resonance: Product and coproduct formulas, Bridging Algebra, Geometry, and Topology, Springer Proc. Math. Stat. 96, Springer, Cham (2014), 269–280. 10.1007/978-3-319-09186-0_17Suche in Google Scholar
[62] S. Papadima and A. I. Suciu, The topology of compact Lie group actions through the lens of finite models, Int. Math. Res. Not. IMRN (2018), 10.1093/imrn/rnx294. 10.1093/imrn/rnx294Suche in Google Scholar
[63] S. Papadima and A. I. Suciu, Infinitesimal finiteness obstructions, J. Lond. Math. Soc. (2) 99 (2019), no. 1, 173–193. 10.1112/jlms.12169Suche in Google Scholar
[64]
S. Papadima and S. Yuzvinsky,
On rational
[65] R. Plantiko, The graded Lie algebra of a Kähler group, Forum Math. 8 (1996), no. 5, 569–583. 10.1515/form.1996.8.569Suche in Google Scholar
[66] A. Polishchuk and L. Positselski, Quadratic Algebras, Univ. Lecture Ser. 37, American Mathematical Society, Providence, 2005. 10.1090/ulect/037Suche in Google Scholar
[67]
R. Porter,
Milnor’s
[68] G. Putinar, Minimal models and the virtual degree of Seifert fibered spaces, Matematiche (Catania) 53 (1998), no. 2, 319–329. Suche in Google Scholar
[69] D. Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205–295. 10.2307/1970725Suche in Google Scholar
[70] D. Quillen, On the associated graded ring of a group ring, J. Algebra 10 (1968), 411–418. 10.1016/0021-8693(68)90069-0Suche in Google Scholar
[71] P. Scott, The geometries of 3-manifolds, Bull. Lond. Math. Soc. 15 (1983), no. 5, 401–487. 10.1112/blms/15.5.401Suche in Google Scholar
[72] J.-P. Serre, Lie Algebras and Lie Groups, 2nd ed., Lecture Notes in Math. 1500, Springer, Berlin, 1992. 10.1007/978-3-540-70634-2Suche in Google Scholar
[73] J. Stallings, Homology and central series of groups, J. Algebra 2 (1965), 170–181. 10.1016/0021-8693(65)90017-7Suche in Google Scholar
[74] A. I. Suciu, Cohomology jump loci of 3-manifolds, preprint (2019), https://arxiv.org/abs/1901.01419v1. 10.1007/s00229-020-01264-5Suche in Google Scholar
[75] A. I. Suciu and H. Wang, Pure virtual braids, resonance, and formality, Math. Z. 286 (2017), no. 3–4, 1495–1524. 10.1007/s00209-016-1811-xSuche in Google Scholar
[76] A. I. Suciu and H. Wang, The pure braid groups and their relatives, Perspectives in Lie Theory, Springer INdAM Ser. 19, Springer, Cham (2017), 403–426. 10.1007/978-3-319-58971-8_15Suche in Google Scholar
[77] A. I. Suciu and H. Wang, Chen ranks and resonance varieties of the upper McCool groups, preprint (2018), https://arxiv.org/abs/1804.06006v1. 10.1016/j.aam.2019.07.004Suche in Google Scholar
[78] A. I. Suciu and H. Wang, Cup products, lower central series, and holonomy Lie algebras, J. Pure. Appl. Algebra 223 (2019), no. 8, 3359–3385. 10.1016/j.jpaa.2018.11.006Suche in Google Scholar
[79] D. Sullivan, On the intersection ring of compact three manifolds, Topology 14 (1975), no. 3, 275–277. 10.1016/0040-9383(75)90009-9Suche in Google Scholar
[80] D. Sullivan, Infinitesimal computations in topology, Publ. Math. Inst. Hautes Études Sci. 47 (1977), 269–331. 10.1007/BF02684341Suche in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Characteristic functions of semigroups in semi-simple Lie groups
- Damping estimates for oscillatory integral operators with real-analytic phases and its applications
- Formality properties of finitely generated groups and Lie algebras
- Toric actions in cosymplectic geometry
- On classification of typical representations for GL3(F)
- Integrable generators of Lie algebras of vector fields on ℂn
- Expanding phenomena over matrix rings
- On sup-norm bounds part II: GL(2) Eisenstein series
- Sublinear elliptic problems under radiality. Harmonic NA groups and Euclidean spaces
- Partial and full boundary regularity for non-autonomous functionals with Φ-growth conditions
- Radial averaging operator acting on Bergman and Lebesgue spaces
- The 𝑝-adic variation of the Gross–Kohnen–Zagier theorem
Artikel in diesem Heft
- Frontmatter
- Characteristic functions of semigroups in semi-simple Lie groups
- Damping estimates for oscillatory integral operators with real-analytic phases and its applications
- Formality properties of finitely generated groups and Lie algebras
- Toric actions in cosymplectic geometry
- On classification of typical representations for GL3(F)
- Integrable generators of Lie algebras of vector fields on ℂn
- Expanding phenomena over matrix rings
- On sup-norm bounds part II: GL(2) Eisenstein series
- Sublinear elliptic problems under radiality. Harmonic NA groups and Euclidean spaces
- Partial and full boundary regularity for non-autonomous functionals with Φ-growth conditions
- Radial averaging operator acting on Bergman and Lebesgue spaces
- The 𝑝-adic variation of the Gross–Kohnen–Zagier theorem