Home Mathematics Characteristic functions of semigroups in semi-simple Lie groups
Article
Licensed
Unlicensed Requires Authentication

Characteristic functions of semigroups in semi-simple Lie groups

  • Luiz A. B. San Martin EMAIL logo and Laercio J. Santos
Published/Copyright: March 21, 2019

Abstract

Let G be a noncompact semi-simple Lie group with Iwasawa decomposition G=KAN. For a semigroup SG with nonempty interior we find a domain of convergence of the Helgason–Laplace transform IS(λ,u)=Seλ(𝖺(g,u))𝑑g, where dg is the Haar measure of G, uK, λ𝔞, 𝔞 is the Lie algebra of A and gu=ke𝖺(g,u)nKAN. The domain is given in terms of a flag manifold of G written 𝔽Θ(S) called the flag type of S, where Θ(S) is a subset of the simple system of roots. It is proved that IS(λ,u)< if λ belongs to a convex cone defined from Θ(S) and uπ-1(𝒟Θ(S)(S)), where 𝒟Θ(S)(S)𝔽Θ(S) is a B-convex set and π:K𝔽Θ(S) is the natural projection. We prove differentiability of IS(λ,u) and apply the results to construct of a Riemannian metric in 𝒟Θ(S)(S) invariant by the group SS-1 of units of S.

MSC 2010: 22E46; 22F30; 22E30

Communicated by Karl-Hermann Neeb


Funding statement: The first author was supported by CNPq grant no. 303755/09-1, FAPESP grant no. 2012/18780-0 and CNPq/Universal grant no 476024/2012-9.

References

[1] S.-I. Amari, Differential-geometrical Methods in Statistics, Lect. Notes Stat. 28, Springer, New York, 1985. 10.1007/978-1-4612-5056-2Search in Google Scholar

[2] O. G. do Rocio and L. A. B. San Martin, Connected components of open semigroups in semi-simple Lie groups, Semigroup Forum 69 (2004), 1–29. 10.1007/s00233-004-0105-5Search in Google Scholar

[3] J. J. Duistermaat and J. A. C. Kolk, Lie Groups, Universitext, Springer, Berlin, 2000. 10.1007/978-3-642-56936-4Search in Google Scholar

[4] Y. Guivarch, L. Ji and J. C. Taylor, Compactifications of Symmetric Spaces, Progr. Math. 156, Birkhäuser, Boston, 1998. 10.1007/978-1-4612-2452-5_6Search in Google Scholar

[5] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Pure Appl. Math. 80, Academic Press, New York, 1978. Search in Google Scholar

[6] S. Helgason, Groups and Geometric Analysis. Integral Geometry, Invariant Differential Operators, and Spherical Functions, Pure Appl. Math. 113, Academic Press, Orlando, 1984. Search in Google Scholar

[7] J. Hilgert and K.-H. Neeb, Lie Semigroups and Their Applications, Lecture Notes in Math. 1552, Springer, Berlin, 1993. 10.1007/BFb0084640Search in Google Scholar

[8] J. Hilgert and K.-H. Neeb, Maximality of compression semigroups, Semigroup Forum 50 (1995), no. 2, 205–222. 10.1007/BF02573517Search in Google Scholar

[9] J. Hilgert and G. Ólafsson, Causal Symmetric Spaces. Geometry and Harmonic Analysis, Perspect. Math. 18, Academic Press, San Diego, 1997. 10.1016/B978-012525430-4/50004-8Search in Google Scholar

[10] A. W. Knapp, Lie Groups Beyond an Introduction, Progr. Math. 140, Birkhäuser, Boston, 1996. 10.1007/978-1-4757-2453-0Search in Google Scholar

[11] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. I, Interscience, New York, 1969. Search in Google Scholar

[12] M. Koecher, Positivitätsbereiche im Rn, Amer. J. Math. 79 (1957), 575–596. 10.2307/2372563Search in Google Scholar

[13] G. Letac, Exponential family of probability distributions, Encyclopedia of Mathematics. Supplement II, Kluwer Academic, Dordrecht (2000), 209–211. Search in Google Scholar

[14] G. Letac, Natural exponential families of probability distributions, Encyclopedia of Mathematics. Supplement II, Kluwer Academic, Dordrecht (2000), 353–355. Search in Google Scholar

[15] L. A. B. San Martin, Invariant control sets on flag manifolds, Math. Control Signals Systems 6 (1993), no. 1, 41–61. 10.1007/BF01213469Search in Google Scholar

[16] L. A. B. San Martin, Order and domains of attraction of control sets in flag manifolds, J. Lie Theory 8 (1998), no. 2, 335–350. Search in Google Scholar

[17] L. A. B. San Martin, Maximal semigroups in semi-simple Lie groups, Trans. Amer. Math. Soc. 353 (2001), no. 12, 5165–5184. 10.1090/S0002-9947-01-02868-9Search in Google Scholar

[18] L. A. B. San Martin and P. A. Tonelli, Semigroup actions on homogeneous spaces, Semigroup Forum 50 (1995), 59–88. 10.1007/BF02573505Search in Google Scholar

[19] L. J. Santos and L. A. B. San Martin, Semigroups in symmetric Lie groups, Indag. Math. (N. S.) 18 (2007), no. 1, 135–146. 10.1016/S0019-3577(07)80011-5Search in Google Scholar

[20] V. S. Varadarajan, Harmonic Analysis on Real Reductive Groups, Lecture Notes in Math. 576, Springer, Berlin, 1977. 10.1007/BFb0097814Search in Google Scholar

[21] V. S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations, Grad. Texts in Math. 102, Springer, New York, 1984. 10.1007/978-1-4612-1126-6Search in Google Scholar

[22] E. B. Vinberg, The theory of homogeneous convex cones, Trudy Moskov. Mat. Obšč. 12 (1963), 303–358. Search in Google Scholar

[23] G. Warner, Harmonic Analysis on Semi-simple Lie Groups. I, Grundlehren Math. Wiss. 188, Springer, New York, 1972. 10.1007/978-3-642-50275-0Search in Google Scholar

Received: 2018-10-08
Revised: 2019-02-07
Published Online: 2019-03-21
Published in Print: 2019-07-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 4.2.2026 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2018-0243/html
Scroll to top button