Startseite Jantzen filtration and strong linkage principle for modular Lie superalgebras
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Jantzen filtration and strong linkage principle for modular Lie superalgebras

  • Lei Pan und Bin Shu EMAIL logo
Veröffentlicht/Copyright: 7. August 2018

Abstract

In this paper, we introduce super Weyl groups, their distinguished elements and properties for basic classical Lie superalgebras. Then we formulate Jantzen filtration for baby Verma modules in graded restricted module categories of basic classical Lie superalgebras over an algebraically closed field of odd characteristic, and obtain a sum formula in the corresponding Grothendieck groups. Consequently, we formulate a strong linkage principle for such categories.


Communicated by Karl-Hermann Neeb


Award Identifier / Grant number: 11671138

Funding statement: This work is partially supported by the NSFC (grant no. 11671138) and by the Shanghai Key Laboratory of PMMP (grant no. 13dz2260400).

Acknowledgements

The second-named author thanks Shun-Jen Cheng and Changjie Cheng very much for helpful discussions, and he thanks Weiqiang Wang for his helpful comments.

References

[1] F. A. Berezin, Introduction to Superanalysis, Math. Phys. Appl. Math. 9, D. Reidel, Dordrecht, 1987. 10.1007/978-94-017-1963-6Suche in Google Scholar

[2] J. Brundan and A. Kleshchev, Modular representations of the supergroup Q(n). I, J. Algebra 260 (2003), no. 1, 64–98. 10.1016/S0021-8693(02)00620-8Suche in Google Scholar

[3] J. Brundan and J. Kujawa, A new proof of the Mullineux conjecture, J. Algebraic Combin. 18 (2003), no. 1, 13–39. 10.1023/A:1025113308552Suche in Google Scholar

[4] S. Cheng, B. Shu and W. Wang, Modular representations of exceptional supergroups, Math. Z. (2018), 10.1007/s00209-018-2098-x. 10.1007/s00209-018-2098-xSuche in Google Scholar

[5] S.-J. Cheng, N. Lam and W. Wang, The Brundan–Kazhdan–Lusztig conjecture for general linear Lie superalgebras, Duke Math. J. 164 (2015), no. 4, 617–695. 10.1215/00127094-2881265Suche in Google Scholar

[6] S.-J. Cheng and W. Wang, Dualities and Representations of Lie Superalgebras, Grad. Stud. Math. 144, American Mathematical Society, Providence, 2012. 10.1090/gsm/144Suche in Google Scholar

[7] R. Fioresi and F. Gavarini, Chevalley supergroups, Mem. Amer. Math. Soc. 1014 (2012), 1–64. 10.1090/S0065-9266-2011-00633-7Suche in Google Scholar

[8] R. Fioresi and F. Gavarini, Algebraic supergroups with Lie superalgebras of classical type, J. Lie Theory 23 (2013), no. 1, 143–158. Suche in Google Scholar

[9] F. Gavarini, Chevalley supergroups of type D(2,1;a), Proc. Edinb. Math. Soc. (2) 57 (2014), 465–491. 10.1017/S0013091513000503Suche in Google Scholar

[10] I. Heckenberger, The Weyl groupoid of a Nichols algebra of diagonal type, Invent. Math. 164 (2006), no. 1, 175–188. 10.1007/s00222-005-0474-8Suche in Google Scholar

[11] I. Heckenberger and H. Yamane, A generalization of Coxeter groups, root systems, and Matsumoto’s theorem, Math. Z. 259 (2008), no. 2, 255–276. 10.1007/s00209-007-0223-3Suche in Google Scholar

[12] J. E. Humphreys, Linear Algebraic Groups, Grad. Texts in Math. 21, Springer, New York, 1975. 10.1007/978-1-4684-9443-3Suche in Google Scholar

[13] J. E. Humphreys, Representations of Semisimple Lie Algebras in the BGG Category 𝒪, Grad. Stud. Math. 94, American Mathematical Society, Providence, 2008. 10.1090/gsm/094Suche in Google Scholar

[14] K. Iohara and Y. Koga, Central extensions of Lie superalgebras, Comment. Math. Helv. 76 (2001), no. 1, 110–154. 10.1007/s000140050152Suche in Google Scholar

[15] J. C. Jantzen, Moduln mit einem höchsten Gewicht, Lecture Notes in Math. 750, Springer, Berlin, 1979. 10.1007/BFb0069521Suche in Google Scholar

[16] J. C. Jantzen, Darstellungen halbeinfacher Gruppen und ihrer Frobenius-Kerne, J. Reine Angew. Math. 317 (1980), 157–199. 10.1515/crll.1980.317.157Suche in Google Scholar

[17] J. C. Jantzen, Representations of Lie algebras in prime characteristic, Representation Theories and Algebraic Geometry (Montreal 1997), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 514, Kluwer Academic, Dordrecht (1998), 185–235. 10.1007/978-94-015-9131-7_5Suche in Google Scholar

[18] J. C. Jantzen, Modular representations of reductive Lie algebras, J. Pure Appl. Algebra 152 (2000), no. 1–3, 133–185. 10.1016/S0022-4049(99)00142-5Suche in Google Scholar

[19] J. C. Jantzen, Representations of Algebraic Groups, 2nd ed., Math. Surveys Monogr. 107, American Mathematical Society, Providence, 2003. Suche in Google Scholar

[20] V. Kac, Representations of classical Lie superalgebras, Differential Geometrical Methods in Mathematical Physics II (Bonn 1977), Lecture Notes in Math. 676, Springer, Berlin (1978), 597–626. 10.1007/BFb0063691Suche in Google Scholar

[21] V. G. Kac, Lie superalgebras, Adv. Math. 26 (1977), no. 1, 8–96. 10.1016/0001-8708(77)90017-2Suche in Google Scholar

[22] B. Kostant, Graded manifolds, graded Lie theory, and prequantization, Differential Geometrical Methods in Mathematical Physics, Lecture Notes in Math. 570, Springer, Berlin (1977), 177–306. 10.1007/BFb0087788Suche in Google Scholar

[23] J.-L. Koszul, Graded manifolds and graded Lie algebras, Proceedings of the International Meeting on Geometry and Physics (Florence 1982), Pitagora, Bologna (1983), 71–84. Suche in Google Scholar

[24] J. Kujawa, The Steinberg tensor product theorem for GL(m|n), Representations of Algebraic Groups, Quantum Groups, and Lie Algebras, Contemp. Math. 413, American Mathematical Society, Providence (2006), 123–132. 10.1090/conm/413/07843Suche in Google Scholar

[25] Y. Li and B. Shu, Jantzen filtration for algebraic supergroups, in preparation. Suche in Google Scholar

[26] Z. Lin and D. K. Nakano, Algebraic group actions in the cohomology theory of Lie algebras of Cartan type, J. Algebra 179 (1996), no. 3, 852–888. 10.1006/jabr.1996.0040Suche in Google Scholar

[27] Y. I. Manin, Gauge Field Theory and Complex Geometry, 2nd ed., Grundlehren Math. Wiss. 289, Springer, Berlin, 1997. 10.1007/978-3-662-07386-5Suche in Google Scholar

[28] F. Marko, Combinatorial aspects of the linkage principle for general linear supergroups, preprint (2016), https://arxiv.org/abs/1609.01783. Suche in Google Scholar

[29] F. Marko and A. N. Zubkov, Blocks for the general linear supergroup GL(m|n), Transform. Groups 23 (2018), no. 1, 185–215. 10.1007/s00031-017-9429-6Suche in Google Scholar

[30] F. Marko and A. N. Zubkov, Linkage principle for ortho-symplectic supergroups, J. Algebra 493 (2018), 444–482. 10.1016/j.jalgebra.2017.09.010Suche in Google Scholar

[31] I. M. Musson, Lie Superalgebras and Enveloping Algebras, Grad. Stud. Math. 131, American Mathematical Society, Providence, 2012. 10.1090/gsm/131Suche in Google Scholar

[32] I. M. Musson, Shapovalov elements and the Jantzen filtration for contragredient Lie superalgebras: A Survey, preprint (2015), https://arxiv.org/abs/1503.08721v1. 10.1088/1742-6596/597/1/012062Suche in Google Scholar

[33] A. N. Sergeev and A. P. Veselov, Grothendieck rings of basic classical Lie superalgebras, Ann. of Math. (2) 173 (2011), no. 2, 663–703. 10.4007/annals.2011.173.2.2Suche in Google Scholar

[34] B. Shu and W. Wang, Modular representations of the ortho-symplectic supergroups, Proc. Lond. Math. Soc. (3) 96 (2008), no. 1, 251–271. 10.1112/plms/pdm040Suche in Google Scholar

[35] B. Shu and C. Zhang, Restricted representations of the Witt superalgebras, J. Algebra 324 (2010), no. 4, 652–672. 10.1016/j.jalgebra.2010.04.032Suche in Google Scholar

[36] B. Shu and L. Zheng, On Lie superalgebras of algebraic supergroups, Algebra Colloq. 16 (2009), no. 3, 361–370. 10.1142/S1005386709000352Suche in Google Scholar

[37] Y. Su and R. B. Zhang, Generalised Jantzen filtration of Lie superalgebras I, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 4, 1103–1133. 10.4171/JEMS/328Suche in Google Scholar

[38] W. Wang and L. Zhao, Representations of Lie superalgebras in prime characteristic. I, Proc. Lond. Math. Soc. (3) 99 (2009), no. 1, 145–167. 10.1112/plms/pdn057Suche in Google Scholar

[39] W. Wang and L. Zhao, Representations of Lie superalgebras in prime characteristic II: The queer series, J. Pure Appl. Algebra 215 (2011), no. 10, 2515–2532. 10.1016/j.jpaa.2011.02.011Suche in Google Scholar

[40] Y. Zeng and B. Shu, On Kac–Weisfeiler modules for general and special linear Lie superalgebras, Israel J. Math. 214 (2016), no. 1, 471–490. 10.1007/s11856-016-1338-1Suche in Google Scholar

[41] Y. Zeng and B. Shu, Finite W-superalgebras and dimensional lower bounds for the representations of basic Lie superalgebras, Publ. Res. Inst. Math. Sci. 53 (2017), no. 1, 1–63. 10.4171/PRIMS/53-1-1Suche in Google Scholar

[42] C. Zhang, On the simple modules for the restricted Lie superalgebra sl(n|1), J. Pure Appl. Algebra 213 (2009), no. 5, 756–765. 10.1016/j.jpaa.2008.09.005Suche in Google Scholar

[43] L. Zhao, Representations of Lie superalgebras in prime characteristic, III, Pacific J. Math. 248 (2010), no. 2, 493–510. 10.2140/pjm.2010.248.493Suche in Google Scholar

[44] L. S. Zheng and B. Shu, Representations of 𝔤𝔩(m|n) and infinitesimal subgroups of GL(m|n), Chinese Ann. Math. Ser. A 31 (2010), no. 2, 129–142. Suche in Google Scholar

Received: 2018-03-17
Revised: 2018-06-27
Published Online: 2018-08-07
Published in Print: 2018-11-01

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 9.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2018-0065/html
Button zum nach oben scrollen