Home ϕ-amenability and character amenability of Fréchet algebras
Article
Licensed
Unlicensed Requires Authentication

ϕ-amenability and character amenability of Fréchet algebras

  • Fatemeh Abtahi EMAIL logo , Somaye Rahnama and Ali Rejali
Published/Copyright: June 30, 2018

Abstract

Right φ-amenability and right character amenability have been introduced for Banach algebras. Here, these concepts will be generalized for Fréchet algebras. Then some of the previous available results about right φ-amenability and right character amenability for the case of Banach algebras will be verified for Fréchet algebras. Related results about Segal Fréchet algebras are provided.


Communicated by Freydoon Shahidi


References

[1] F. Abtahi, S. Rahnama and A. Rejali, Semisimple Segal Fréchet algebras, Period. Math. Hungar. 71 (2015), no. 2, 146–154. 10.1007/s10998-015-0092-1Search in Google Scholar

[2] F. Abtahi, S. Rahnama and A. Rejali, Weak amenability of Fréchet algebras, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 77 (2015), no. 4, 93–104. Search in Google Scholar

[3] F. Abtahi, S. Rahnama and A. Rejali, Segal Fréchet algebras, Anal. Math. (2017), 10.1007/s10476-017-0601-y. 10.1007/s10476-017-0601-ySearch in Google Scholar

[4] H. P. Aghababa, L. Y. Shi and Y. J. Wu, Generalized notions of character amenability, Acta Math. Sin. (Engl. Ser.) 29 (2013), no. 7, 1329–1350. 10.1007/s10114-013-0627-4Search in Google Scholar

[5] M. Alaghmandan, R. Nasr-Isfahani and M. Nemati, Character amenability and contractibility of abstract Segal algebras, Bull. Aust. Math. Soc. 82 (2010), no. 2, 274–281. 10.1017/S0004972710000286Search in Google Scholar

[6] M. Blümlinger and R. F. Tichy, Topological algebras of functions of bounded variation. I, Manuscripta Math. 65 (1989), no. 2, 245–255. 10.1007/BF01168302Search in Google Scholar

[7] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, New York, 1973. 10.1007/978-3-642-65669-9Search in Google Scholar

[8] J. T. Burnham, Closed ideals in subalgebras of Banach algebras. I, Proc. Amer. Math. Soc. 32 (1972), 551–555. 10.1090/S0002-9939-1972-0295078-5Search in Google Scholar

[9] H. G. Dales, Banach Algebras and Automatic Continuity, London Math. Soc. Monogr. (N. S.) 24, Oxford University Press, New York, 2000. 10.1093/oso/9780198500131.001.0001Search in Google Scholar

[10] R. El Harti, Contractible Fréchet algebras, Proc. Amer. Math. Soc. 132 (2004), no. 5, 1251–1255. 10.1090/S0002-9939-03-07198-3Search in Google Scholar

[11] M. Fragoulopoulou, Topological Algebras with Involution, North-Holland Math. Stud. 200, Elsevier Science, Amsterdam, 2005. Search in Google Scholar

[12] H. Goldmann, Uniform Fréchet Algebras, North-Holland Math. Stud.162, North-Holland, Amsterdam, 1990. Search in Google Scholar

[13] S. L. Gulick, The bidual of a locally multiplicatively-convex algebra, Pacific J. Math. 17 (1966), 71–96. 10.2140/pjm.1966.17.71Search in Google Scholar

[14] A. Y. Helemskii, The Homology of Banach and Topological Algebras, Math. Appl. (Soviet Series) 41, Kluwer Academic, Dordrecht, 1989. 10.1007/978-94-009-2354-6Search in Google Scholar

[15] A. Y. Helemskii, Banach and Locally Convex Algebras, Oxford Sci. Publ., Oxford, New York, 1993. 10.1093/oso/9780198535782.001.0001Search in Google Scholar

[16] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis. Vol. II: Structure and Analysis for Compact groups. Analysis on Locally Compact Abelian Groups, Grundlehren Math. Wiss. 152, Springer, New York, 1970. 10.1007/978-3-662-26755-4_3Search in Google Scholar

[17] Z. Hu, M. S. Monfared and T. Traynor, On character amenable Banach algebras, Studia Math. 193 (2009), no. 1, 53–78. 10.4064/sm193-1-3Search in Google Scholar

[18] B. E. Johnson, Cohomology in Banach Algebras, Mem. Amer. Math. Soc. 127, American Mathematical Society, Providence, 1972. 10.1090/memo/0127Search in Google Scholar

[19] E. Kaniuth, A Course in Commutative Banach Algebras, Grad. Texts in Math., Springer, Berlin, 2009. 10.1007/978-0-387-72476-8Search in Google Scholar

[20] E. Kaniuth, A. T. Lau and J. Pym, On character amenability of Banach algebras, J. Math. Anal. Appl. 344 (2008), no. 2, 942–955. 10.1016/j.jmaa.2008.03.037Search in Google Scholar

[21] E. Kaniuth, A. T. Lau and J. Pym, On φ-amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc. 144 (2008), no. 1, 85–96. 10.1017/S0305004107000874Search in Google Scholar

[22] J. L. Kelley, General Topology, Grad. Texts in Math. 27, Springer, New York, 1975. Search in Google Scholar

[23] P. Lawson and C. J. Read, Approximate amenability of Fréchet algebras, Math. Proc. Cambridge Philos. Soc. 145 (2008), no. 2, 403–418. 10.1017/S0305004108001473Search in Google Scholar

[24] A. Mallios, Topological Algebras. Selected Topics, North-Holland Math. Stud. 124, North-Holland, Amsterdam, 1986. Search in Google Scholar

[25] R. Meise and D. Vogt, Introduction to Functional Analysis, Oxf. Grad. Texts Math. 2, Oxford University Press, New York, 1997. 10.1093/oso/9780198514855.001.0001Search in Google Scholar

[26] M. S. Monfared, Character amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc. 144 (2008), no. 3, 697–706. 10.1017/S0305004108001126Search in Google Scholar

[27] A. Y. Pirkovskii, Flat cyclic Fréchet modules, amenable Fréchet algebras, and approximate identities, Homology Homotopy Appl. 11 (2009), no. 1, 81–114. 10.4310/HHA.2009.v11.n1.a5Search in Google Scholar

[28] H. Reiter, L1-Algebras and Segal Algebras, Lecture Notes in Math. 231, Springer, Berlin, 1971. 10.1007/BFb0060759Search in Google Scholar

[29] C. E. Rickart, General Theory of Banach Algebras, R. E. Krieger, Huntington, 1974. Search in Google Scholar

[30] V. Runde, Lectures on Amenability, Lecture Notes in Math. 1774, Springer, Berlin, 2002. 10.1007/b82937Search in Google Scholar

[31] H. H. Schaefer, Topological Vector Spaces, Springer, New York, 1971. 10.1007/978-1-4684-9928-5Search in Google Scholar

[32] P. A. Schweitzer, Claude Godbillon: l’homme et son travail mathématique. Discours prononcé par Paul A. Schweitzer, S. J. à l’ouverture du colloque, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 1–2, 1–10. 10.5802/aif.1283Search in Google Scholar

[33] H. A. Smith, Tensor products of locally convex algebras, Proc. Amer. Math. Soc. 17 (1966), 124–132. 10.1090/S0002-9939-1966-0188818-4Search in Google Scholar

[34] M. Sugiura, Fourier series of smooth functions on compact Lie groups, Osaka J. Math. 8 (1971), 33–47. Search in Google Scholar

[35] J. L. Taylor, Homology and cohomology for topological algebras, Adv. Math. 9 (1972), 137–182. 10.1016/0001-8708(72)90016-3Search in Google Scholar

[36] F. Trèves, Topological Vector Spaces, Distributions and Kernels, Dover Publications, Mineola, 2006. Search in Google Scholar

Received: 2016-05-09
Published Online: 2018-06-30
Published in Print: 2018-11-01

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2016-0116/html
Scroll to top button