Startseite Order of the canonical vector bundle over configuration spaces of spheres
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Order of the canonical vector bundle over configuration spaces of spheres

  • Shiquan Ren EMAIL logo
Veröffentlicht/Copyright: 9. Mai 2018

Abstract

Given a vector bundle, its (stable) order is the smallest positive integer t such that the t-fold self-Whitney sum is (stably) trivial. So far, the order and the stable order of the canonical vector bundle over configuration spaces of Euclidean spaces have been studied in [F. R. Cohen, R. L. Cohen, N. J. Kuhn and J. A. Neisendorfer, Bundles over configuration spaces, Pacific J. Math. 104 1983, 1, 47–54], [F. R. Cohen, M. E. Mahowald and R. J. Milgram, The stable decomposition for the double loop space of a sphere, Algebraic and Geometric Topology (Stanford 1976), Proc. Sympos. Pure Math. 32 Part 2, American Mathematical Society, Providence 1978, 225–228], and [S.-W. Yang, Order of the Canonical Vector Bundle on Cn(k)/Σk, ProQuest LLC, Ann Arbor, 1978]. Moreover, the order and the stable order of the canonical vector bundle over configuration spaces of closed orientable Riemann surfaces with genus greater than or equal to one have been studied in [F. R. Cohen, R. L. Cohen, N. J. Kuhn and J. A. Neisendorfer, Bundles over configuration spaces, Pacific J. Math. 104 1983, 1, 47–54]. In this paper, we mainly study the order and the stable order of the canonical vector bundle over configuration spaces of spheres and disjoint unions of spheres.


Communicated by Frederick R. Cohen


Acknowledgements

The present author would like to express his deep gratitude to Professor Frederick R. Cohen and Professor Jie Wu for their kind guidance and helpful encouragement on this topic. The present author would like to thank the referee for the valuable comments and helpful suggestions.

References

[1] J. F. Adams, Vector fields on spheres, Ann. of Math. (2) 75 (1962), 603–632. 10.2307/1970213Suche in Google Scholar

[2] J. S. Birman, Braids, Links, and Mapping Class Groups, Ann. of Math. Stud. 82, Princeton University Press, Princeton, 1974. 10.1515/9781400881420Suche in Google Scholar

[3] C.-F. Bödigheimer, Stable splittings of mapping spaces, Algebraic Topology (Seattle 1985), Lecture Notes in Math. 1286, Springer, Berlin (1987), 174–187. 10.1007/BFb0078741Suche in Google Scholar

[4] C.-F. Bödigheimer, F. Cohen and L. Taylor, On the homology of configuration spaces, Topology 28 (1989), no. 1, 111–123. 10.1016/0040-9383(89)90035-9Suche in Google Scholar

[5] T. Church, Homological stability for configuration spaces of manifolds, Invent. Math. 188 (2012), no. 2, 465–504. 10.1007/s00222-011-0353-4Suche in Google Scholar

[6] F. R. Cohen, R. L. Cohen, N. J. Kuhn and J. A. Neisendorfer, Bundles over configuration spaces, Pacific J. Math. 104 (1983), no. 1, 47–54. 10.2140/pjm.1983.104.47Suche in Google Scholar

[7] F. R. Cohen, R. L. Cohen, B. Mann and R. J. Milgram, Divisors and configurations on a surface, Algebraic Topology (Evanston 1988), Contemp. Math. 96, American Mathematical Society, Providence (1989), 103–108. 10.1090/conm/096/1022676Suche in Google Scholar

[8] F. R. Cohen, M. E. Mahowald and R. J. Milgram, The stable decomposition for the double loop space of a sphere, Algebraic and Geometric Topology (Stanford 1976), Proc. Sympos. Pure Math. 32 Part 2, American Mathematical Society, Providence (1978), 225–228. 10.1090/pspum/032.2/520543Suche in Google Scholar

[9] J. P. May, The Geometry of Iterated Loop Spaces, Lectures Notes in Math. 271, Springer, Berlin, 1972. 10.1007/BFb0067491Suche in Google Scholar

[10] D. McDuff, Configuration spaces of positive and negative particles, Topology 14 (1975), 91–107. 10.1016/0040-9383(75)90038-5Suche in Google Scholar

[11] F. Napolitano, On the cohomology of configuration spaces on surfaces, J. Lond. Math. Soc. (2) 68 (2003), no. 2, 477–492. 10.1112/S0024610703004617Suche in Google Scholar

[12] O. Randal-Williams, “Topological chiral homology” and configuration spaces of spheres, Morfismos 17 (2013), 57–70. Suche in Google Scholar

[13] P. Salvatore, Configuration spaces on the sphere and higher loop spaces, Math. Z. 248 (2004), no. 3, 527–540. 10.1007/s00209-004-0668-6Suche in Google Scholar

[14] M. B. Sevryuk, Cohomology of projectively compactified complex swallowtails and their complements, Russian Math. Surveys 39 (1984), no. 5, 285–286. 10.1070/RM1984v039n05ABEH004090Suche in Google Scholar

[15] P. Silberbush, Order of the identity of the stable summands of Ω2kS2n+1, Pacific J. Math. 166 (1994), no. 1, 99–122. 10.2140/pjm.1994.166.99Suche in Google Scholar

[16] J. Wu, On the homology of configuration spaces C((M,M0)×𝐑n;X), Math. Z. 22 (1998), 235–248. 10.1007/PL00004657Suche in Google Scholar

[17] S.-W. Yang, Order of the Canonical Vector Bundle on Cn(k)/Σk, ProQuest LLC, Ann Arbor, 1978. Suche in Google Scholar

[18] S. W. Yang, Order of the canonical vector bundle on Cn(k)/Σk, Illinois J. Math. 25 (1981), no. 1, 136–146. 10.1215/ijm/1256047373Suche in Google Scholar

Received: 2018-02-16
Revised: 2018-03-01
Published Online: 2018-05-09
Published in Print: 2018-09-01

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 5.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2018-0046/html?lang=de
Button zum nach oben scrollen