Home Contractibility of the stability manifold for silting-discrete algebras
Article
Licensed
Unlicensed Requires Authentication

Contractibility of the stability manifold for silting-discrete algebras

  • David Pauksztello EMAIL logo , Manuel Saorín and Alexandra Zvonareva
Published/Copyright: April 21, 2018

Abstract

We show that any bounded t-structure in the bounded derived category of a silting-discrete algebra is algebraic, i.e. has a length heart with finitely many simple objects. As a corollary, we obtain that the space of Bridgeland stability conditions for a silting-discrete algebra is contractible.

MSC 2010: 18E30; 16G10

Communicated by Frederick R. Cohen


Award Identifier / Grant number: 16-31-60089

Award Identifier / Grant number: MTM2016-77445

Funding statement: Alexandra Zvonareva is supported by the RFBR Grant 16-31-60089. Manuel Saorín is supported by research projects from the Ministerio de Economía y Competitividad of Spain (MTM2016-77445P) and from the Fundación “Séneca” of Murcia (19880/GERM/15), both with a part of FEDER funds.

References

[1] T. Adachi, The classification of two-term tiling complexes for Brauer graph algebras, Proceedings of the 48th Symposium on Ring Theory and Representation Theory, Symp. Ring Theory Represent. Theory Organ. Comm., Yamanashi (2016), 1–5. Search in Google Scholar

[2] T. Adachi, O. Iyama and I. Reiten, τ-tilting theory, Compos. Math. 150 (2014), no. 3, 415–452. 10.1112/S0010437X13007422Search in Google Scholar

[3] T. Adachi, Y. Mizuno and D. Yang, Silting-discreteness of triangulated categories and contractibility of stability spaces, preprint (2017), http://arxiv.org/abs/1708.08168. Search in Google Scholar

[4] T. Aihara, Tilting-connected symmetric algebras, Algebr. Represent. Theory 16 (2013), no. 3, 873–894. 10.1007/s10468-012-9337-3Search in Google Scholar

[5] T. Aihara and O. Iyama, Silting mutation in triangulated categories, J. Lond. Math. Soc. (2) 85 (2012), no. 3, 633–668. 10.1112/jlms/jdr055Search in Google Scholar

[6] T. Aihara and Y. Mizuno, Tilting complexes over preprojective algebras of Dynkin type, Proceedings of the 47th Symposium on Ring Theory and Representation Theory, Symp. Ring Theory Represent. Theory Organ. Comm., Okayama (2015), 14–19. 10.2140/ant.2017.11.1287Search in Google Scholar

[7] L. Angeleri Hügel, F. Marks and J. Vitória, Silting modules, Int. Math. Res. Not. IMRN (2016), no. 4, 1251–1284. 10.1093/imrn/rnv191Search in Google Scholar

[8] M. Auslander, Representation theory of Artin algebras. I, Comm. Algebra 1 (1974), 177–268. 10.1080/00927877408548230Search in Google Scholar

[9] M. Auslander, Representation theory of Artin algebras. II, Comm. Algebra 1 (1974), 269–310. 10.1080/00927877409412807Search in Google Scholar

[10] A. A. Beĭlinson, J. Bernstein and P. Deligne, Faisceaux pervers, Analysis and Topology on Singular Spaces. I (Luminy 1981), Astérisque 100, Société Mathématique de France, Paris (1982), 5–171. Search in Google Scholar

[11] A. Beligiannis and I. Reiten, Homological and homotopical aspects of torsion theories, Mem. Amer. Math. Soc. 188 (2007), no. 883, 1–207. 10.1090/memo/0883Search in Google Scholar

[12] T. Bridgeland, Stability conditions on triangulated categories, Ann. of Math. (2) 166 (2007), no. 2, 317–345. 10.4007/annals.2007.166.317Search in Google Scholar

[13] N. Broomhead, D. Pauksztello and D. Ploog, Averaging t-structures and extension closure of aisles, J. Algebra 394 (2013), 51–78. 10.1016/j.jalgebra.2013.07.007Search in Google Scholar

[14] N. Broomhead, D. Pauksztello and D. Ploog, Discrete derived categories II: The silting pairs CW complex and the stability manifold, J. Lond. Math. Soc. (2) 93 (2016), no. 2, 273–300. 10.1112/jlms/jdv069Search in Google Scholar

[15] S. E. Dickson, A torsion theory for Abelian categories, Trans. Amer. Math. Soc. 121 (1966), 223–235. 10.1090/S0002-9947-1966-0191935-0Search in Google Scholar

[16] L. Demonet, O. Iyama and G. Jasso, τ-tilting finite algebras, g-vectors and brick-τ-rigid correspondence, preprint (2015), http://arxiv.org/abs/1503.00285. Search in Google Scholar

[17] G. Dimitrov, F. Haiden, L. Katzarkov and M. Kontsevich, Dynamical systems and categories, The Influence of Solomon Lefschetz in Geometry and Topology, Contemp. Math. 621, American Mathematical Society, Providence (2014), 133–170.10.1090/conm/621/12421Search in Google Scholar

[18] G. Dimitrov and L. Katzarkov, Bridgeland stability conditions on the acyclic triangular quiver, Adv. Math. 288 (2016), 825–886. 10.1016/j.aim.2015.10.014Search in Google Scholar

[19] L. Fiorot, F. Mattiello and A. Tonolo, A classification theorem for t-structures, J. Algebra 465 (2016), 214–258. 10.1016/j.jalgebra.2016.07.008Search in Google Scholar

[20] F. Haiden, L. Katzarkov and M. Kontsevich, Flat surfaces and stability structures, Publ. Math. Inst. Hautes Études Sci. 126 (2017), 247–318. 10.1007/s10240-017-0095-ySearch in Google Scholar

[21] D. Happel, I. Reiten and S. O. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 120 (1996), no. 575, 1–88. 10.1090/memo/0575Search in Google Scholar

[22] O. Iyama, P. Jø rgensen and D. Yang, Intermediate co-t-structures, two-term silting objects, τ-tilting modules, and torsion classes, Algebra Number Theory 8 (2014), no. 10, 2413–2431. 10.2140/ant.2014.8.2413Search in Google Scholar

[23] B. Keller and D. Vossieck, Aisles in derived categories, Bull. Soc. Math. Belg. Sér. A 40 (1988), no. 2, 239–253. Search in Google Scholar

[24] A. King and Y. Qiu, Exchange graphs and Ext quivers, Adv. Math. 285 (2015), 1106–1154. 10.1016/j.aim.2015.08.017Search in Google Scholar

[25] S. Koenig and D. Yang, Silting objects, simple-minded collections, t-structures and co-t-structures for finite-dimensional algebras, Doc. Math. 19 (2014), 403–438. 10.4171/dm/451Search in Google Scholar

[26] E. Macrì, Stability conditions on curves, Math. Res. Lett. 14 (2007), no. 4, 657–672. 10.4310/MRL.2007.v14.n4.a10Search in Google Scholar

[27] P. Nicolás, M. Saorín and A. Zvonareva, Silting theory in triangulated categories with coproducts, preprint (2015), http://arxiv.org/abs/1512.04700. 10.1016/j.jpaa.2018.07.016Search in Google Scholar

[28] S. Okada, Stability manifold of 1, J. Algebraic Geom. 15 (2006), no. 3, 487–505. 10.1090/S1056-3911-06-00432-2Search in Google Scholar

[29] A. Polishchuk, Constant families of t-structures on derived categories of coherent sheaves, Mosc. Math. J. 7 (2007), no. 1, 109–134, 167. 10.17323/1609-4514-2007-7-1-109-134Search in Google Scholar

[30] C. Psaroudakis and J. Vitória, Realisation functors in tilting theory, Math. Z. 288 (2018), no. 3–4, 965–1028. 10.1007/s00209-017-1923-ySearch in Google Scholar

[31] Y. Qiu, Stability conditions and quantum dilogarithm identities for Dynkin quivers, Adv. Math. 269 (2015), 220–264. 10.1016/j.aim.2014.10.014Search in Google Scholar

[32] Y. Qiu and J. Woolf, Contractible stability spaces and faithful braid group actions, preprint (2014), http://arxiv.org/abs/1407.5986. 10.2140/gt.2018.22.3701Search in Google Scholar

[33] M. Saorín and J. Šťovíček, On exact categories and applications to triangulated adjoints and model structures, Adv. Math. 228 (2011), no. 2, 968–1007. 10.1016/j.aim.2011.05.025Search in Google Scholar

[34] D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras. Vol. 2, London Math. Soc. Stud. Texts 71, Cambridge University Press, Cambridge, 2007. 10.1017/CBO9780511619403Search in Google Scholar

[35] J. Woolf, Stability conditions, torsion theories and tilting, J. Lond. Math. Soc. (2) 82 (2010), no. 3, 663–682. 10.1112/jlms/jdq035Search in Google Scholar

Received: 2017-06-11
Revised: 2018-02-27
Published Online: 2018-04-21
Published in Print: 2018-09-01

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 12.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2017-0120/html
Scroll to top button