Startseite Star-group identities on units of group algebras: The non-torsion case
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Star-group identities on units of group algebras: The non-torsion case

  • Antonio Giambruno ORCID logo EMAIL logo , Cesar Polcino Milies und Sudarshan K. Sehgal
Veröffentlicht/Copyright: 17. Juni 2017

Abstract

Let G be a group, F a field and FG the corresponding group algebra. We consider an involution on FG which is the linear extension of an involution of G, e.g., g*=g-1 for gG. This paper is focused on the characterization of a non-torsion group G provided the group of units U(FG) satisfies a *-group identity. The torsion case was studied in [7], and when * is the classical involution, this problem was solved in the case of symmetric units in [21].

MSC 2010: 16U60; 16W10

Communicated by Manfred Droste


Funding statement: The first author was partially supported by GNSAGA of INDAM. The second author was partially supported by CNPq., Proc. 300243/79-0(RN) and FAPESP, Proc 2009/52665-0. The third author was supported by NSERC

References

[1] S. A. Amitsur, Identities in rings with involution, Israel J. Math. 7 (1969), 63–68. 10.1007/BF02771748Suche in Google Scholar

[2] O. Broche, E. Jespers, C. Polcino Milies and M. Ruiz, Antisymmetric elements in group rings. II, J. Algebra Appl. 8 (2009), 115–127. 10.1142/S0219498809003254Suche in Google Scholar

[3] F. Catino, G. T. Lee and E. Spinelli, Group algebras whose symmetric elements are Lie metabelian, Forum Math. 26 (2014), 1459–1471. 10.1515/forum-2012-0005Suche in Google Scholar

[4] A. Giambruno, E. Jespers and A. Valenti, Group identities on units of rings, Arch. Math. (Basel) 63 (1994), no. 4, 291–296. 10.1007/BF01189563Suche in Google Scholar

[5] A. Giambruno, C. Polcino Milies and S. K. Sehgal, Group identities on symmetric units, J. Algebra 322 (2009), 2801–2815. 10.1016/j.jalgebra.2009.06.025Suche in Google Scholar

[6] A. Giambruno, C. Polcino Milies and S. K. Sehgal, Lie properties of symmetric elements in group rings, J. Algebra 321 (2009), 890–902. 10.1016/j.jalgebra.2008.09.041Suche in Google Scholar

[7] A. Giambruno, C. Polcino Milies and S. K. Sehgal, Star-group identities and groups of units, Arch. Math. (Basel) 95 (2010), 501–508. 10.1007/s00013-010-0195-0Suche in Google Scholar

[8] A. Giambruno, S. K. Sehgal and A. Valenti, Group identities on units of group algebras, J. Algebra 226 (2000), 488–504. 10.1006/jabr.1999.8203Suche in Google Scholar

[9] E. Jespers and M. Ruiz Marin, On symmetric elements and symmetric units in group rings, Comm. Algebra 34 (2006), 727–736. 10.1080/00927870500388018Suche in Google Scholar

[10] G. T. Lee, Group Identities on Units and Symmetric Units of Group Rings, Algebr. Appl. 12, Springer, London, 2010. 10.1007/978-1-84996-504-0Suche in Google Scholar

[11] G. T. Lee, A survey on *-group identities on units of group rings, Comm. Algebra 40 (2012), 4540–4567. 10.1080/00927872.2011.611845Suche in Google Scholar

[12] G. T. Lee, S. K. Sehgal and E. Spinelli, Group rings whose unitary units are nilpotent, J. Algebra 410 (2014), 343–354. 10.1016/j.jalgebra.2014.01.041Suche in Google Scholar

[13] C. H. Liu and D. S. Passman, Group algebras with units satisfying a group identity. II, Proc. Amer. Math. Soc. 127 (1999), no. 2, 337–341. 10.1090/S0002-9939-99-04684-5Suche in Google Scholar

[14] D. S. Passman, The Algebraic Structure of Group Rings, Wiley-Interscience, New York, 1977. Suche in Google Scholar

[15] D. S. Passman, Group algebras whose units satisfy a group identity. II, Proc. Amer. Math. Soc. 125 (1997), 657–662. 10.1090/S0002-9939-97-04024-0Suche in Google Scholar

[16] C. Polcino Milies and S. K. Sehgal, An Introduction to Group Rings, Kluwer Academic, Dordrecht, 2002. 10.1007/978-94-010-0405-3Suche in Google Scholar

[17] L. H. Rowen, Polynomial Identities in Ring Theory, Academic Press, New York, 1980. Suche in Google Scholar

[18] L. H. Rowen, Ring Theory. Vol. II, Academic Press, New York, 1988. Suche in Google Scholar

[19] S. K. Sehgal, Topics in Groups Rings, Marcel Dekker, New York, 1978. Suche in Google Scholar

[20] S. K. Sehgal, Units in Integral Group Rings, Longman Scientific & Technical, New York, 1993. Suche in Google Scholar

[21] S. K. Sehgal and A. Valenti, Group algebras with symmetric units satisfying a group identity, Manuscripta Math. 119 (2006), 243–254. 10.1007/s00229-005-0610-1Suche in Google Scholar

Received: 2016-12-27
Revised: 2017-05-03
Published Online: 2017-06-17
Published in Print: 2018-01-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2016-0266/html
Button zum nach oben scrollen