Startseite Lp boundedness of rough bi-parameter Fourier integral operators
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Lp boundedness of rough bi-parameter Fourier integral operators

  • Qing Hong , Guozhen Lu und Lu Zhang EMAIL logo
Veröffentlicht/Copyright: 19. April 2017

Abstract

In this paper, we will investigate the boundedness of the bi-parameter Fourier integral operators (or FIOs for short) of the following form:

T(f)(x)=1(2π)2n2neiφ(x,ξ,η)a(x,ξ,η)f^(ξ,η)𝑑ξ𝑑η,

where x=(x1,x2)n×n and ξ,ηn{0}, a(x,ξ,η)LBSρm is the amplitude, and the phase function is of the form φ(x,ξ,η)=φ1(x1,ξ)+φ2(x2,η), with φ1,φ2LΦ2(n×n{0}), and satisfies a certain rough non-degeneracy condition (see (2.2)).

The study of these operators are motivated by the Lp estimates for one-parameter FIOs and bi-parameter Fourier multipliers and pseudo-differential operators. We will first define the bi-parameter FIOs and then study the Lp boundedness of such operators when their phase functions have compact support in frequency variables with certain necessary non-degeneracy conditions. We will then establish the Lp boundedness of the more general FIOs with amplitude a(x,ξ,η)LBSρm and non-smooth phase function φ(x,ξ,η) on x satisfying a rough non-degeneracy condition.

MSC 2010: 42B20; 42B25

Communicated by Christopher D. Sogge


Award Identifier / Grant number: 11371056

Award Identifier / Grant number: DMS-1301595

Funding statement: The first author’s research was partly supported by a grant of NNSF of China (no. 11371056), and the second and third authors’ research was partly supported by a US NSF grant (DMS-1301595). Also the third author was partly supported by a Simons Fellowship from the Simons Foundation.

Acknowledgements

We like to thank Chris Sogge for his valuable comments on our work and for his encouragement to consider possible future applications of rough bi-parameter Fourier integral operators in PDEs. We also like to thank the referee for his useful comments.

References

[1] A. Calderón and R. Vaillancourt, On the boundedness of pseudo-differential operators, J. Math Soc. Japan 23 (1971), 374–378. 10.2969/jmsj/02320374Suche in Google Scholar

[2] J. Chen and G. Lu, Hörmander type theorems for multi-linear and multi-parameter Fourier multiplier operators with limited smoothness, Nonlinear Anal. 101 (2014), 98–112. 10.1016/j.na.2014.01.005Suche in Google Scholar

[3] L. Chen, G. Lu and X. Luo, Boundedness of multi-parameter Fourier multiplier operators on Triebel–Lizorkin and Besov–Lipschitz spaces, Nonlinear Anal. 134 (2016), 55–69. 10.1016/j.na.2015.12.016Suche in Google Scholar

[4] E. Cordero, F. Nicola and L. Rodino, On the global boundedness of Fourier integral operators, Ann. Global Anal. Geom. 38 (2010), no. 4, 373–398. 10.1007/s10455-010-9219-zSuche in Google Scholar

[5] S. Coriasco and M. Ruzhansky, Global Lp continuity of Fourier integral operators, Trans. Amer. Math. Soc. 366 (2014), no. 5, 2575–2596. 10.1090/S0002-9947-2014-05911-4Suche in Google Scholar

[6] W. Dai and G. Lu, Lp estimates for multi-linear and multi-parameter pseudo-differential operators, Bull. Soc. Math. France 143 (2015), no. 3, 567–597. 10.24033/bsmf.2698Suche in Google Scholar

[7] G. I. Èskin, Degenerate elliptic pseudodifferential equations of principal type (in Russian), Mat. Sb. (N.S.) 82(124) (1970), 585–628. 10.1070/SM1970v011n04ABEH001304Suche in Google Scholar

[8] R. Fefferman and E. M. Stein, Singular integrals on product spaces, Adv. Math. 45 (1982), no. 2, 117–143. 10.1016/S0001-8708(82)80001-7Suche in Google Scholar

[9] D. D. S. Ferreira and W. Staubach, Global and local regularity for Fourier integral operators on weighted and unweighted spaces, Mem. Amer. Math. Soc. 229 (2014), Paper Number 1074. Suche in Google Scholar

[10] D. Fujiwara, A global version of Eskin’s theorem, J. Fac. Sci. Univ. Tokyo Sect. I A Math. 24 (1977), no. 2, 327–339. Suche in Google Scholar

[11] Q. Hong and G. Lu, Symbolic calculus and boundedness of multi-parameter and multi-linear pseudo-differential operators, Adv. Nonlinear Stud. 14 (2014), no. 4, 1055–1082. 10.1515/ans-2014-0413Suche in Google Scholar

[12] Q. Hong and L. Zhang, Lp estimates for bi-parameter and bilinear Fourier integral operators, Acta Math. Sin. (Engl. Ser.) 33 (2017), no. 2, 165–186. 10.1007/s10114-016-6269-6Suche in Google Scholar

[13] L. Hörmander, Fourier integral operators I, Acta Math. 127 (1971), 79–183. 10.1007/BF02392052Suche in Google Scholar

[14] J. Journé, Calderón–Zygmund operators on product spaces, Rev. Mat. Iberoam. 1 (1985), no. 3, 55–91. 10.4171/RMI/15Suche in Google Scholar

[15] C. E. Kenig and W. Staubach, Ψ-pseudodifferential operators and estimates formaximal oscillatory integrals, Studia Math. 183 (2007), no. 3, 249–258. 10.4064/sm183-3-3Suche in Google Scholar

[16] G. Lu and L. Zhang, Bi-parameter and bilinear Calderón–Vaillancourt theorem with subcritical order, Forum Math. 28 (2016), no. 6, 1087–1094. 10.1515/forum-2015-0156Suche in Google Scholar

[17] G. Mockenhaupt, A. Seeger and C. D. Sogge, Local smoothing of Fourier integral operators and Carleson–Sjšlin estimates, J. Amer. Math. Soc. 6 (1993), no. 1, 65–130. 10.1090/S0894-0347-1993-1168960-6Suche in Google Scholar

[18] G. Mockenhaupt, A. Seeger and C. D. Sogge, Wave front sets, local smoothing and Bourgain’s circular maximal theorem, Ann. of Math. (2) 136 (1992), no. 1, 207–218. 10.2307/2946549Suche in Google Scholar

[19] C. Muscalu, J. Pipher, T. Tao and C. Thiele, Bi-parameter paraproducts, Acta Math. 193 (2004), no. 2, 269–296. 10.1007/BF02392566Suche in Google Scholar

[20] S. Rodríguez-López and W. Staubach, Estimates for rough Fourier integral and pseudodifferential operators and applications to the boundedness of multilinear operators, J. Funct. Anal. 264 (2013), no. 10, 2356–2385. 10.1016/j.jfa.2013.02.018Suche in Google Scholar

[21] S. Rodríguez-López and W. Staubach, A Seeger Sogge and Stein Type theorem bilinear Fourier integral operators, Adv. Math. 264 (2014), 1–54. 10.1016/j.aim.2014.07.009Suche in Google Scholar

[22] M. Ruzhansky and M. Sugimoto, Global L2 -boundedness theorems for a class of Fourier integral operators, Comm. Partial Differential Equations 31 (2006), no. 4–6, 547–569. 10.1080/03605300500455958Suche in Google Scholar

[23] M. Ruzhansky and M. Sugimoto, Weighted Sobolev L2 estimates for a class of Fourier integral operators, Math. Nachr. 284 (2011), no. 13, 1715–1738. 10.1002/mana.200910080Suche in Google Scholar

[24] A. Seeger, C. D. Sogge and E. M. Stein, Regularity properties of Fourier integral operators, Ann. of Math. (2) 134 (1991), no. 2, 231–251. 10.2307/2944346Suche in Google Scholar

[25] C. D. Sogge, Fourier Integrals in Classical Analysis, Cambridge Tracts in Math. 105, Cambridge University Press, Cambridge, 1993. 10.1017/CBO9780511530029Suche in Google Scholar

[26] E. M. Stein, Harmonic Analysis, Real-variable Methods, Orthogonality and Oscillatory Integrals, Princeton University Press, Princeton, 1993. 10.1515/9781400883929Suche in Google Scholar

Received: 2016-10-27
Revised: 2017-02-19
Published Online: 2017-04-19
Published in Print: 2018-01-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2016-0221/html
Button zum nach oben scrollen