Startseite Mathematik Metrical universality for groups
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Metrical universality for groups

  • Michal Doucha EMAIL logo
Veröffentlicht/Copyright: 19. August 2016

Abstract

We prove that for any constant K>0, there exists a separable group equipped with a complete bi-invariant metric bounded by K, which is isometric to the Urysohn sphere of diameter K and of ‘almost-universal disposition’. It is thus an object in the category of separable groups with bi-invariant metric, analogous in its properties to the Gurarij space from the category of separable Banach spaces. We show that this group contains an isometric copy of any separable group equipped with a bi-invariant metric bounded by K. As a consequence, we get that it is a universal Polish group admitting a compatible bi-invariant metric or a universal second countable SIN group. Moreover, the almost-universal disposition shows that the automorphism group of this group is rich and it characterizes the group uniquely up to isometric isomorphism. We also show that this group is in a certain sense generic in the class of separable groups with bi-invariant metric (bounded by K).

On the other hand, we prove that there is no metrically universal separable group with bi-invariant metric when there is no restriction on the diameter. The same is true for separable locally compact groups with bi-invariant metric.

Assuming the generalized continuum hypothesis (GCH), we prove that there exists a metrically universal (unbounded) group of density κ with bi-invariant metric for any uncountable cardinal κ. Moreover, under GCH, we deduce that there exists a universal SIN group of weight κ for any infinite cardinal κ.

MSC 2010: 22A05; 54E50; 03C98

Communicated by Manfred Droste


Funding statement: The author was supported by IMPAN’s international fellowship program partially sponsored by PCOFUND-GA-2012-600415.

References

[1] I. Ben-Yaacov, The linear isometry group of the Gurarij space is universal, Proc. Amer. Math. Soc. 142 (2014), no. 7, 2459–2467. 10.1090/S0002-9939-2014-11956-3Suche in Google Scholar

[2] L. Ding, On surjectively universal Polish groups, Adv. Math. 231 (2012), no. 5, 2557–2572. 10.1016/j.aim.2012.06.029Suche in Google Scholar

[3] L. Ding and S. Gao, Graev metric groups and Polishable subgroups, Adv. Math. 213 (2007), no. 2, 887–901. 10.1016/j.aim.2007.01.014Suche in Google Scholar

[4] M. Doucha, Metrically universal abelian groups, preprint (2013), https://arxiv.org/abs/1312.7683. 10.1090/tran/7059Suche in Google Scholar

[5] M. Doucha, Non-abelian group structure on the Urysohn space, Fund. Math. 228 (2015), 251–263. 10.4064/fm228-3-3Suche in Google Scholar

[6] M. Droste and R. Göbel, A categorical theorem on universal objects and its application in abelian group theory and computer science, Proceedings of the International Conference on Algebra (Novosibirsk 1989), Contemp. Math. 131. Part 3, American Mathematical Society, Providence (1992), 49–74. 10.1090/conm/131.3/1175872Suche in Google Scholar

[7] D. Evans, Homogeneous Structures, Omega-Categoricity and Amalgamation Constructions, Hausdorff Institute for Mathematics, Bonn, 2013, www.uea.ac.uk/~h120/Bonn\_2013\_DE.pdf. Suche in Google Scholar

[8] R. Fraïssé, Sur quelques classifications des systémes de relations, Publ. Sci. Univ. Alger. Sér. A. 1 (1954), 35–182. Suche in Google Scholar

[9] S. Gao, Invariant Descriptive Set Theory, CRC Press, Boca Raton, 2009. 10.1201/9781584887942Suche in Google Scholar

[10] S. Gao and M. Xuan, On non-Archimedean Polish groups with two-sided invariant metrics, Topology Appl. 161 (2014), 343–353. 10.1016/j.topol.2013.10.034Suche in Google Scholar

[11] L. Glebsky and L. M. Rivera, Sofic groups and profinite topology on free groups, J. Algebra 320 (2008), no. 9, 3512–3518. 10.1016/j.jalgebra.2008.08.008Suche in Google Scholar

[12] M. I. Graev, Free topological groups (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 12 (1948), 279–324; translation in Amer. Math. Soc. Transl. Ser. 8 (1962), 305–364. Suche in Google Scholar

[13] V. I. Gurarij, Spaces of universal placement, isotropic spaces and a problem of Mazur on rotations of Banach spaces (in Russian), Sibirsk. Mat. Zh. 7 (1966), 1002–1013. 10.1007/BF01044484Suche in Google Scholar

[14] W. Hodges, Model Theory, Encyclopedia Math. Appl. 42, Cambridge University Press, Cambridge, 1993. 10.1017/CBO9780511551574Suche in Google Scholar

[15] M. Katětov, On universal metric spaces, General Topology and its Relations to Modern Analysis and Algebra. VI (Prague 1986), Res. Exp. Math. 16, Heldermann, Berlin (1988), 323–330. Suche in Google Scholar

[16] W. Kubiś, Fraïssé sequences: Category-theoretic approach to universal homogeneous structures, Ann. Pure Appl. Logic 165 (2014), no. 11, 1755–1811. 10.1016/j.apal.2014.07.004Suche in Google Scholar

[17] W. Kubiś and S. Solecki, A proof of uniqueness of the Gurarii space, Israel J. Math. 195 (2013), no. 1, 449–456. 10.1007/s11856-012-0134-9Suche in Google Scholar

[18] M. Malicki, On Polish groups admitting a compatible complete left-invariant metric, J. Symb. Log. 76 (2011), no. 2, 437–447. 10.2178/jsl/1305810757Suche in Google Scholar

[19] R. D. Mauldin, The Scottish Book. Mathematics from the Scottish Café, Birkhäuser, Boston, 1981. Suche in Google Scholar

[20] J. Melleray and T. Tsankov, Generic representations of abelian groups and extreme amenability, Israel J. Math. 198 (2013), no. 1, 129–167. 10.1007/s11856-013-0036-5Suche in Google Scholar

[21] P. Niemiec, Urysohn universal spaces as metric groups of exponent 2, Fund. Math. 204 (2009), no. 1, 1–6. 10.4064/fm204-1-1Suche in Google Scholar

[22] P. Niemiec, Universal valued Abelian groups, Adv. Math. 235 (2013), 398–449. 10.1016/j.aim.2012.12.005Suche in Google Scholar

[23] N. Ozawa, There is no separable universal II1-factor, Proc. Amer. Math. Soc. 132 (2004), 487–490. 10.1090/S0002-9939-03-07127-2Suche in Google Scholar

[24] V. Pestov, Dynamics of Infinite-Dimensional Groups. The Ramsey–Dvoretzky–Milman Phenomenon, Univ. Lecture Ser. 40, American Mathematical Society, Providence, 2006. 10.1090/ulect/040/02Suche in Google Scholar

[25] V. Pestov, Hyperlinear and sofic groups: A brief guide, Bull. Symb. Log. 14 (2008), no. 4, 449–480. 10.2178/bsl/1231081461Suche in Google Scholar

[26] V. Pestov and V. Uspenskij, Projectively universal countable metrizable groups, preprint (2014), http://arxiv.org/abs/1409.4108. 10.1090/proc/13189Suche in Google Scholar

[27] D. Shakhmatov, J. Pelant and S. Watson, A universal complete metric abelian group of a given weight, Topology with Applications (Szekszárd 1993), Bolyai Soc. Math. Stud. 4, János Bolyai Mathematical Society, Budapest (1995), 431–439. Suche in Google Scholar

[28] S. Shkarin, On universal abelian topological groups, Mat. Sb. 190 (1999), no. 7, 127–144. 10.1070/SM1999v190n07ABEH000418Suche in Google Scholar

[29] O. Sipacheva and V. Uspenskij, Free topological groups with no small subgroups, and Graev metrics (in Russian), Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1987 (1987), no. 4, 21–24, 101. Suche in Google Scholar

[30] K. Slutsky, Graev metrics on free products and HNN extensions, Trans. Amer. Math. Soc. 366 (2014), no. 12, 6353–6395. 10.1090/S0002-9947-2014-06010-8Suche in Google Scholar

[31] P. S. Urysohn, Sur un espace métrique universel, Bull. Sci. Math. (2) 51 (1927), 43–64. Suche in Google Scholar

[32] P. S. Urysohn, Sur un espace métrique universel. II, Bull. Sci. Math. (2) 51 (1927), 74–90. Suche in Google Scholar

[33] V. Uspenskij, A universal topological group with a countable basis, Funktsional. Anal. i Prilozhen. 20 (1986), no. 2, 86–87. 10.1007/BF01077284Suche in Google Scholar

[34] V. Uspenskij, On the group of isometries of the Urysohn universal metric space, Comment. Math. Univ. Carolin. 31 (1990), no. 1, 181–182. Suche in Google Scholar

[35] V. Uspenskij, On subgroups of minimal topological groups, Topology Appl. 155 (2008), 1580–1606. 10.1016/j.topol.2008.03.001Suche in Google Scholar

Received: 2015-9-13
Revised: 2016-6-22
Published Online: 2016-8-19
Published in Print: 2017-7-1

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 4.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2015-0181/html
Button zum nach oben scrollen