Startseite Mathematik Slender domains and compact domains
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Slender domains and compact domains

  • Christian U. Jensen , Søren Jøndrup EMAIL logo und Anders Thorup
Veröffentlicht/Copyright: 17. November 2016

Abstract

We prove that a one-dimensional Noetherian domain is slender if and only if it is not a local complete ring. The latter condition for a general Noetherian domain characterizes the domains that are not algebraically compact. For a general Noetherian domain R we prove that R is algebraically compact if and only if R satisfies a condition slightly stronger than not being slender. In addition we enlarge considerably the number of classes of rings for which the question of slenderness can be answered. For instance we prove that any domain, not a field, essentially of finite type over a field is slender.


Communicated by Manfred Droste


References

[1] N. Bourbaki, Algèbre commutative. Chapitres III et IV. Élements de mathématique, Fasc XXVIII, Herman, Paris, 1967. Suche in Google Scholar

[2] R. Dimitriç, Slender modules over domains, Comm. Algebra 11 (1983), 1685–1700. 10.1080/00927878308822927Suche in Google Scholar

[3] P. C. Eklof and A. H. Mekler, Almost Free Modules, North-Holland Math. Libr. 46, North-Holland, Amsterdam, 1990. Suche in Google Scholar

[4] A. J. Engler and A. Prestel, Valued Fields, Springer, Berlin, 2005. Suche in Google Scholar

[5] L. Fuchs, Abelian Groups, 3rd ed., Pergamon Press, Oxford, 1960. Suche in Google Scholar

[6] L. Fuchs and L. Salce, Modules over Non-Noetherian Domains, Math. Surveys Monogr. 84, Americal Mathematical Society, Providence, 2001. 10.1090/surv/084Suche in Google Scholar

[7] L. Gruson and C. U. Jensen, Dimensions cohomologiques relieés aux foncteurs lim(i), Séminaire d’Algèbre Paul Dubreil et Marie-Paule Malliavin 1980, Lecture Notes in Math. 867, Springer, Berlin (1981), 234–294. 10.1007/BFb0090389Suche in Google Scholar

[8] N. Jacobson, Lectures in Abstract Algebra. Vol. II: Linear Algebra, D. Van Nostrand Company, Toronto, 1953. 10.1007/978-1-4684-7053-6Suche in Google Scholar

[9] C. U. Jensen and H. Lenzing, Model-Theoretic Algebra with Particular Emphasis on Fields, Rings, Modules, Algebra Logic Appl. 2, Gordon and Breach Science Publishers, New York, 1989. Suche in Google Scholar

[10] I. Kaplansky, Infinite Abelian Groups, University of Michigan Press, Ann Arbor, 1954. Suche in Google Scholar

[11] J. D. O’Neill, Slender modules over various rings, Indian J. Pure Appl. Math. 22 (1991), 287–293. Suche in Google Scholar

[12] R. B. Warfield, Purity and algebraic compactness for modules, Pacific J. Math. 28 (1969), 699–719. 10.2140/pjm.1969.28.699Suche in Google Scholar

Received: 2015-12-16
Revised: 2016-7-11
Published Online: 2016-11-17
Published in Print: 2017-7-1

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 4.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2015-0254/html
Button zum nach oben scrollen