Home Slender domains and compact domains
Article
Licensed
Unlicensed Requires Authentication

Slender domains and compact domains

  • Christian U. Jensen , Søren Jøndrup EMAIL logo and Anders Thorup
Published/Copyright: November 17, 2016

Abstract

We prove that a one-dimensional Noetherian domain is slender if and only if it is not a local complete ring. The latter condition for a general Noetherian domain characterizes the domains that are not algebraically compact. For a general Noetherian domain R we prove that R is algebraically compact if and only if R satisfies a condition slightly stronger than not being slender. In addition we enlarge considerably the number of classes of rings for which the question of slenderness can be answered. For instance we prove that any domain, not a field, essentially of finite type over a field is slender.


Communicated by Manfred Droste


References

[1] N. Bourbaki, Algèbre commutative. Chapitres III et IV. Élements de mathématique, Fasc XXVIII, Herman, Paris, 1967. Search in Google Scholar

[2] R. Dimitriç, Slender modules over domains, Comm. Algebra 11 (1983), 1685–1700. 10.1080/00927878308822927Search in Google Scholar

[3] P. C. Eklof and A. H. Mekler, Almost Free Modules, North-Holland Math. Libr. 46, North-Holland, Amsterdam, 1990. Search in Google Scholar

[4] A. J. Engler and A. Prestel, Valued Fields, Springer, Berlin, 2005. Search in Google Scholar

[5] L. Fuchs, Abelian Groups, 3rd ed., Pergamon Press, Oxford, 1960. Search in Google Scholar

[6] L. Fuchs and L. Salce, Modules over Non-Noetherian Domains, Math. Surveys Monogr. 84, Americal Mathematical Society, Providence, 2001. 10.1090/surv/084Search in Google Scholar

[7] L. Gruson and C. U. Jensen, Dimensions cohomologiques relieés aux foncteurs lim(i), Séminaire d’Algèbre Paul Dubreil et Marie-Paule Malliavin 1980, Lecture Notes in Math. 867, Springer, Berlin (1981), 234–294. 10.1007/BFb0090389Search in Google Scholar

[8] N. Jacobson, Lectures in Abstract Algebra. Vol. II: Linear Algebra, D. Van Nostrand Company, Toronto, 1953. 10.1007/978-1-4684-7053-6Search in Google Scholar

[9] C. U. Jensen and H. Lenzing, Model-Theoretic Algebra with Particular Emphasis on Fields, Rings, Modules, Algebra Logic Appl. 2, Gordon and Breach Science Publishers, New York, 1989. Search in Google Scholar

[10] I. Kaplansky, Infinite Abelian Groups, University of Michigan Press, Ann Arbor, 1954. Search in Google Scholar

[11] J. D. O’Neill, Slender modules over various rings, Indian J. Pure Appl. Math. 22 (1991), 287–293. Search in Google Scholar

[12] R. B. Warfield, Purity and algebraic compactness for modules, Pacific J. Math. 28 (1969), 699–719. 10.2140/pjm.1969.28.699Search in Google Scholar

Received: 2015-12-16
Revised: 2016-7-11
Published Online: 2016-11-17
Published in Print: 2017-7-1

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2015-0254/html
Scroll to top button