Startseite Mathematik Regularity estimates in weighted Orlicz spaces for Calderón–Zygmund type singular integral operators
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Regularity estimates in weighted Orlicz spaces for Calderón–Zygmund type singular integral operators

  • Fengping Yao EMAIL logo
Veröffentlicht/Copyright: 11. Juni 2016

Abstract

In this paper we obtain regularity estimates in weighted Orlicz spaces for the Calderón–Zygmund singular integral operators under certain optimal conditions.

MSC 2010: 32A55; 46E30

Communicated by Frank Duzaar


Award Identifier / Grant number: 11471207

Award Identifier / Grant number: 14YZ027

Funding statement: This work is supported in part by the NSFC (11471207) and the Innovation Program of Shanghai Municipal Education Commission (14YZ027).

Acknowledgements

The author wishes to thank the anonymous reviewer for the valuable comments and suggestions to improve the expressions.

References

[1] Acerbi E. and Mingione G., Gradient estimates for a class of parabolic systems, Duke Math. J. 136 (2007), 285–320. 10.1215/S0012-7094-07-13623-8Suche in Google Scholar

[2] Adams R. A. and Fournier J. J. F., Sobolev Spaces, 2nd ed., Academic Press, New York, 2003. Suche in Google Scholar

[3] Benkirane A. and Elmahi A., An existence theorem for a strongly nonlinear elliptic problem in Orlicz spaces, Nonlinear Anal. 36 (1999), 11–24. 10.1016/S0362-546X(97)00612-3Suche in Google Scholar

[4] Bögelein V. and Duzaar F., Higher integrability for parabolic systems with non-standard growth and degenerate diffusions, Publ. Mat. 55 (2011), no. 1, 201–250. 10.5565/PUBLMAT_55111_10Suche in Google Scholar

[5] Bögelein V., Duzaar F. and Mingione G., The regularity of general parabolic systems with degenerate diffusion, Mem. Amer. Math. Soc. 1041 (2013), 1–143. 10.1090/S0065-9266-2012-00664-2Suche in Google Scholar

[6] Byun S., Ok J., Palagachev D. K. and Softova L. G., Parabolic systems with measurable coefficients in weighted Orlicz spaces, Commun. Contemp. Math. 18 (2016), no. 2, Article ID 1550018. 10.1142/S0219199715500182Suche in Google Scholar

[7] Byun S., Palagachev D. K. and Ryu S., Weighted W1,p estimates for solutions of nonlinear parabolic equations over non-smooth domains, Bull. Lond. Math. Soc. 45 (2013), no. 4, 765–778. 10.1112/blms/bdt011Suche in Google Scholar

[8] Byun S. and Ryu S., Global weighted estimates for the gradient of solutions to nonlinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), no. 2, 291–313. 10.1016/j.anihpc.2012.08.001Suche in Google Scholar

[9] Caffarelli L. A. and Peral I., On W1,p estimates for elliptic equations in divergence form, Comm. Pure Appl. Math. 51 (1998), 1–21. 10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.0.CO;2-GSuche in Google Scholar

[10] Calderón A. P. and Zygmund A., On the existence of certain singular integrals, Acta Math. 88 (1952), 85–139. 10.1007/978-94-009-1045-4_3Suche in Google Scholar

[11] Donaldson T., Nonlinear elliptic boundary-value problems in Orlicz–Sobolev spaces, J. Differential Equations 10 (1971), 507–528. 10.1016/0022-0396(71)90009-XSuche in Google Scholar

[12] Donaldson T., Inhomogeneous Orlicz–Sobolev spaces and nonlinear parabolic initial value problems, J. Differential Equations 16 (1974), 201–256. 10.1016/0022-0396(74)90012-6Suche in Google Scholar

[13] Fiorenza A. and Krbec M., Indices of Orlicz spaces and some applications, Comment. Math. Univ. Carolin. 38 (1997), no. 3, 433–451. Suche in Google Scholar

[14] Jiménez Urrea J., The Cauchy problem associated to the Benjamin equation in weighted Sobolev spaces, J. Differential Equations 254 (2013), no. 4, 1863–1892. 10.1016/j.jde.2012.11.016Suche in Google Scholar

[15] Kerman R. A. and Torchinsky A., Integral inequalities with weights for the Hardy maximal function, Studia Math. 71 (1982), 277–284. 10.4064/sm-71-3-277-284Suche in Google Scholar

[16] Kokilashvili V. and Krbec M., Weighted Inequalities in Lorentz and Orlicz Spaces, World Scientific, Hackensack, 1991. 10.1142/1367Suche in Google Scholar

[17] Kufner A., Weighted Sobolev Spaces, John Wiley & Sons, New York, 1985. Suche in Google Scholar

[18] Li D. and Wang L., A new proof for the estimates of Calderón–Zygmund type singular integrals, Arch. Math. (Basel) 87 (2006), no. 5, 458–467. 10.1007/s00013-006-1774-ySuche in Google Scholar

[19] Mengesha T. and Phuc N., Weighted and regularity estimates for nonlinear equations on Reifenberg flat domains, J. Differential Equations 250 (2011), no. 5, 2485–2507. 10.1016/j.jde.2010.11.009Suche in Google Scholar

[20] Mengesha T. and Phuc N., Global estimates for quasilinear elliptic equations on Reifenberg flat domains, Arch. Ration. Mech. Anal. 203 (2012), no. 1, 189–216. 10.1007/s00205-011-0446-7Suche in Google Scholar

[21] Mingione G., The Calderón–Zygmund theory for elliptic problems with measure data, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), no. 2, 195–261. 10.2422/2036-2145.2007.2.01Suche in Google Scholar

[22] Orlicz W., Über eine gewisse Klasse von Räumen vom Typus B, Bull. Int. Acad. Polon. Sci. A 1932 (1932), no. 8–9, 207–220. Suche in Google Scholar

[23] Rao M. and Ren Z., Applications of Orlicz Spaces, Marcel Dekker, New York, 2000. Suche in Google Scholar

[24] Stein E. M., Harmonic Analysis, Princeton University Press, Princeton, 1993. Suche in Google Scholar

[25] Torchinsky A., Real-Variable Methods in Harmonic Analysis, Pure Appl. Math. 123, Academic Press, Orlando, 1986. Suche in Google Scholar

[26] Wang L., Yao F., Zhou S. and Jia H., Optimal regularity for the Poisson equation, Proc. Amer. Math. Soc. 137 (2009), 2037–2047. 10.1090/S0002-9939-09-09805-0Suche in Google Scholar

Received: 2015-6-28
Revised: 2016-1-14
Published Online: 2016-6-11
Published in Print: 2017-1-1

© 2017 by De Gruyter

Heruntergeladen am 4.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2015-0086/html
Button zum nach oben scrollen