Startseite Lévy–Khintchine type representation of Dirichlet generators and semi-Dirichlet forms
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Lévy–Khintchine type representation of Dirichlet generators and semi-Dirichlet forms

  • Wei Sun EMAIL logo und Jing Zhang
Veröffentlicht/Copyright: 25. Januar 2014

Abstract

Let U be an open set of ℝn, m be a positive Radon measure on U such that supp [m]=U, and (Pt)t>0 be a strongly continuous contraction sub-Markovian semigroup on L2(U;m). We investigate the structure of (Pt)t>0.

(i) Denote respectively by (A,D(A)) and (A^,D(A^)) the generator and the co-generator of (Pt)t>0. Under the assumption that C0(U)D(A)D(A^), we give an explicit Lévy–Khintchine type representation of A on C0(U).

(ii) If (Pt)t>0 is an analytic semigroup and hence is associated with a semi-Dirichlet form (,D()), we give an explicit characterization of ℰ on C0(U) under the assumption that C0(U)D().

We also present a LeJan type transformation rule for the diffusion part of regular semi-Dirichlet forms on general state spaces.

MSC: 31C25; 60J25

Funding source: NSERC

Award Identifier / Grant number: 311945-2013

Funding source: NSFC

Award Identifier / Grant number: 11361021

Funding source: NSFC

Award Identifier / Grant number: 11201102

We thank the referee for suggesting us to give some non-trivial examples.

Received: 2013-5-20
Revised: 2013-11-26
Published Online: 2014-1-25
Published in Print: 2015-9-1

© 2015 by De Gruyter

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2013-0082/html
Button zum nach oben scrollen