Startseite Mod-Gaussian convergence: new limit theorems in probability and number theory
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Mod-Gaussian convergence: new limit theorems in probability and number theory

  • Jean Jacod EMAIL logo , Emmanuel Kowalski und Ashkan Nikeghbali
Veröffentlicht/Copyright: 14. April 2010
Forum Mathematicum
Aus der Zeitschrift Band 23 Heft 4

Abstract

We introduce a new type of convergence in probability theory, which we call “mod-Gaussian convergence”. It is directly inspired by theorems and conjectures, in random matrix theory and number theory, concerning moments of values of characteristic polynomials or zeta functions. We study this type of convergence in detail in the framework of infinitely divisible distributions, and exhibit some unconditional occurrences in number theory, in particular for families of L-functions over function fields in the Katz–Sarnak framework. A similar phenomenon of “mod-Poisson convergence” turns out to also appear in the classical Erdős–Kac Theorem.

Received: 2008-07-30
Revised: 2009-11-02
Published Online: 2010-04-14
Published in Print: 2011-July

© de Gruyter 2011

Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/form.2011.030/pdf
Button zum nach oben scrollen