Home Green’s function for the fractional KdV equation on the periodic domain via Mittag–Leffler function
Article
Licensed
Unlicensed Requires Authentication

Green’s function for the fractional KdV equation on the periodic domain via Mittag–Leffler function

  • Uyen Le and Dmitry E. Pelinovsky EMAIL logo
Published/Copyright: October 28, 2021

Abstract

The linear operator c + (−Δ)α/2, where c > 0 and (−Δ)α/2 is the fractional Laplacian on the periodic domain, arises in the existence of periodic travelling waves in the fractional Korteweg–de Vries equation. We establish a relation of the Green function of this linear operator with the Mittag–Leffler function, which was previously used in the context of the Riemann–Liouville and Caputo fractional derivatives. By using this relation, we prove that the Green function is strictly positive and single-lobe (monotonically decreasing away from the maximum point) for every c > 0 and every α ∈ (0, 2]. On the other hand, we argue from numerical approximations that in the case of α ∈ (2, 4], the Green function is positive and single-lobe for small c and non-positive and non-single lobe for large c.

MSC 2010: 34B27; 35Q53; 42A32

Acknowledgements

The authors are thankful to G. Alfimov, P.G. Kevrekidis, T. Simon and A. Stefanov for relevant suggestions which helped completing this project.

References

1 J. Boyd, Chebyshev and Fourier Spectral Methods. Dover Publishers, New York (2001).Search in Google Scholar

2 V. Ambrosio, On the existence of periodic solutions for a fractional Schrödinger equation. Proc. AMS 146 (2018), 3767–3775.10.1090/proc/13630Search in Google Scholar

3 Z. Bai and H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311 (2005), 495–505.10.1016/j.jmaa.2005.02.052Search in Google Scholar

4 H. Bateman, Higher Transcendental Functions, Vol. III. McGraw-Hill Book Company, New York (1953).Search in Google Scholar

5 H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differental Equations. Springer, New York (2011).10.1007/978-0-387-70914-7Search in Google Scholar

6 H. Chen, Existence of periodic traveling-wave solutions of nonlinear, dispersive wave equations. Nonlinearity 17 (2004), 2041–2056.10.1088/0951-7715/17/6/003Search in Google Scholar

7 H. Chen and J. Bona, Periodic travelling wave solutions of nonlinear dispersive evolution equations. Discr. Cont. Dynam. Syst. 33 (2013), 4841–4873.10.3934/dcds.2013.33.4841Search in Google Scholar

8 M. Chugunova and D.E. Pelinovsky, Two-pulse solutions in the fifth-order KdV equation: rigorous theory and numerical approximations. Discr. Cont. Dynam. Syst B 8 (2007), 773–800.10.3934/dcdsb.2007.8.773Search in Google Scholar

9 K. Claassen, M. Johnson, Nondegeneracy and stability of antiperiodic bound states for fractional nonlinear Schrödinger equations. J. Diff. Equs. 266 (2019), 5664–5712.10.1016/j.jde.2018.10.033Search in Google Scholar

10 R.J. Decker, A. Demirkaya, N.S. Manton, and P.G. Kevrekidis, Kink-antikink interaction forces and bound states in a biharmonic ϕ4 model. J. Phys. A: Math. Theor. 53 (2021), # 375702.10.1088/1751-8121/aba4d2Search in Google Scholar

11 R.J. Decker, A. Demirkaya, P.G. Kevrekidis, D. Iglesias, J. Severino, and Y. Shavit, Kink dynamics in a nonlinear beam model. Comm. Nonlin. Sci. Numer. Simul. 97 (2021), # 105747.10.1016/j.cnsns.2021.105747Search in Google Scholar

12 Z. Du and C. Gui, Further study on periodic solutions of elliptic equations with a fractional Laplacian, Nonlinear Analysis 193 (2020), # 111417, 16 pp.10.1016/j.na.2019.01.007Search in Google Scholar

13 R.L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacian in ℝ. Acta Math. 210 (2013), 261–318.10.1007/s11511-013-0095-9Search in Google Scholar

14 R. Garappa, The Mittag–Leffler function. MATLAB Central File Exchange, Retrieved October 31, 2020.Search in Google Scholar

15 R. Gorenflo, A. Kilbas, F. Mainardi, and S. Rogosin, Mittag- Leffler Functions, Related Topics and Applications. Springer-Verlag, Berlin (2020), Second Ed.10.1007/978-3-662-61550-8Search in Google Scholar

16 K.A. Gorshkov and L.A. Ostrovsky, Interactions of solitons in nonintegrable systems: Direct perturbation method and applications. Physica D 3 (1981), 428–438.10.1016/0167-2789(81)90146-9Search in Google Scholar

17 S. Hakkaev and A.G. Stefanov, Stability of periodic waves for the fractional KdV and NLS equations. Proc. Royal Soc. Edinburgh A 151 (2021), 1171–1203.10.1017/prm.2020.54Search in Google Scholar

18 V.M. Hur and M. Johnson, Stability of periodic traveling waves for nonlinear dispersive equations. SIAM J. Math. Anal. 47 (2015), 3528–3554.10.1137/12090215XSearch in Google Scholar

19 M.A. Johnson, Stability of small periodic waves in fractional KdV-type equations. SIAM J. Math. Anal. 45 (2013), 3168–3293.10.1137/120894397Search in Google Scholar

20 A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Application of Fractional Differential Equations. Elsevier, New York (2006).Search in Google Scholar

21 F. Olver, Asymptotics and Special Functions. AKP Classics, Massachusetts (1996).10.1201/9781439864548Search in Google Scholar

22 U. Le, D. Pelinovsky, Convergence of Petviashvili–s method near periodic waves in the fractional Korteweg–De Vries equation. SIAM J. Math. Anal. 51 (2019), 2850–2883.10.1137/18M1215050Search in Google Scholar

23 A. Lischke, G. Pang, M. Gulian, F. Song, C. Glusa, X. Zheng, Z. Mao, W. Cai, M.M. Meerschaert, M. Ainsworth, and G.E. Karniadakis, What is the fractional Laplacian? A comparative review with new results. J. Comp. Phys. 404 (2020), # 109009, 62 pp.10.1016/j.jcp.2019.109009Search in Google Scholar

24 N.S. Manton, An effective Lagrangian for solitons. Nucl. Phys. B 150 (1979), 397–412.10.1016/0550-3213(79)90309-2Search in Google Scholar

25 M.G Mittag–Leffler, Sur la nouvelle fonction Eα(x). Acad. Sci. Paris 137 (1903), 554–558.Search in Google Scholar

26 F. Natali, D. Pelinovsky and U. Le, New variational characterization of periodic waves in the fractional Korteweg–de Vries equation. Nonlinearity 33 (2020), 1956–1986.10.1088/1361-6544/ab6a79Search in Google Scholar

27 F. Natali, D. Pelinovsky and U. Le, Periodic waves in the fractional modified Korteweg–de Vries equation. J. Dyn. Diff. Equat. (2021); DOI: 10.1007/s10884-021-10000-w; see also: Coorection to ...; DOI: 10.1007/s10884-021-10016-2.10.1007/s10884-021-10000-wSearch in Google Scholar

28 J.J. Nieto, Maximum principles for fractional differential equations derived from Mittag–Leffler functions. Appl. Math. Lett. 23 (2010), 1248–1251.10.1016/j.aml.2010.06.007Search in Google Scholar

29 R. Parker, B. Sandstede, Periodic multi-pulses and spectral stability in Hamiltonian PDEs with symmetry. Preprint arXiv: 2010:05728 (2020).10.1016/j.jde.2022.06.019Search in Google Scholar

30 I. Podlubny, Fractional Differential Equations. Academic Press, San Diego etc. (1999).Search in Google Scholar

31 H. Pollard, The complete monotonic character of the Mittag–Leffler function Eα(−x). Bull. Amer. Math. Soc. 54 (1948), 1115–1116.10.1090/S0002-9904-1948-09132-7Search in Google Scholar

32 A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev, Integrals And Series: Volume 1. Elementary Functions. Taylor & Francis, London (2002).Search in Google Scholar

33 L. Roncal and P.R. Stinga, Fractional Laplacian on the torus. Commun. Contemp. Math. 18 (2016), # 1550033, 26 pp.10.1142/S0219199715500339Search in Google Scholar

Received: 2021-01-12
Revised: 2021-09-08
Published Online: 2021-10-28
Published in Print: 2021-10-26

© 2021 Diogenes Co., Sofia

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/fca-2021-0063/html?lang=en
Scroll to top button