Abstract
This paper discusses a construction of fractional differential geometry of curves (curvature of curve and Frenet-Serret formulas). A tangent vector of plane curve is defined by the Caputo fractional derivative. Under a simplification for the fractional derivative of composite function, a fractional expression of Frenet frame of curve is obtained. Then, the Frenet-Serret formulas and the curvature are derived for the fractional ordered frame. The different property from the ordinary theory of curve is given by the explicit expression of arclength in the fractional-order curvature. The arclength part of the curvature takes a large value around an initial time and converges to zero for a long period of time. This trend of curvature may reflect the memory effect of fractional derivative which is progressively weaken for a long period of time. Indeed, for a circle and a parabola, the curvature decreases over time. These results suggest that the basic property of fractional derivative is included in the fractional-order curvature appropriately.
References
[1] Om.P. Agrawal, Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, Issue 1 (2002), 368–379; 10.1016/S0022-247X(02)00180-4.Suche in Google Scholar
[2] T.M. Atanacković, S. Konjik, Lj. Oparnica, S. Pilipović, Generalized Hamilton’s principle with fractional derivatives. J. Phys. A: Math. Theor. 43, No 25 (2010), # 255203; 10.1088/1751-8113/43/25/255203.Suche in Google Scholar
[3] R.L. Bagley, R.A. Calico, Fractional order state equations for the control of viscoelastically damped structures. J. Guid. Control Dynam. 14, No 2 (1991), 304–311; 10.2514/3.20641.Suche in Google Scholar
[4] R.L. Bagley, P.J. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27, No 3 (1983), 201–210; 10.1122/1.549724.Suche in Google Scholar
[5] R.L. Bagley, P.J. Torvik, Fractional calculus - A different approach to the analysis of viscoelastically damped structures. AIAA J. 21, No 5 (1983), 741–748; 10.2514/3.8142.Suche in Google Scholar
[6] R.L. Bagley, P.J. Torvik, On the fractional calculus model of viscoelastic behavior. J. Rheol. 30, No 1 (1986), 133–155; 10.1122/1.549887.Suche in Google Scholar
[7] D. Baleanu, J.J. Trujillo, A new method of finding the fractional Euler-Lagrange and Hamilton equations within Caputo fractional derivatives. Comm. Nonlin. Sci. Numer. Simul. 15, No 5 (2010), 1111–1115; 10.1016/j.cnsns.2009.05.023.Suche in Google Scholar
[8] D. Baleanu, S.I. Vacaru, Constant curvature coefficients and exact solutions in fractional gravity and geometric mechanics. Cent. Eur. J. Phys. 9, No 5 (2011), 1267–1279; 10.2478/s11534-011-0040-5.Suche in Google Scholar
[9] D. Baleanu, S.I. Vacaru, Fractional almost Kähler-Lagrange geometry. Nonlinear Dyn. 64, No 4 (2011), 365–373; 10.1007/s11071-010-9867-3.Suche in Google Scholar
[10] D. Baleanu, S.I. Vacaru, Fractional curve flows and solitonic hierarchies in gravity and geometric mechanics. J. Math. Phys. 52, No 5 (2011), # 053514; 10.1063/1.3589964.Suche in Google Scholar
[11] D. Baleanu, S.I. Vacaru, Fedosov quantization of fractional Lagrange spaces. Int. J. Theor. Phys. 50, No 1 (2011), 233–243; 10.1007/s10773-010-0514-z.Suche in Google Scholar
[12] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus: Models and Numerical Methods. World Scientific, New Jersey (2012).10.1142/8180Suche in Google Scholar
[13] D. Baleanu, T. Maaraba (Abdeljawad), F. Jarad, Fractional variational principles with delay. J. Phys. A: Math. Theor. 41, No 31 (2008), # 315403; 10.1088/1751-8113/41/31/315403.Suche in Google Scholar
[14] M. Caputo, Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astr. Soc. 13, No 5 (1967), 529–539; 10.1111/j.1365-246X.1967.tb02303.x.Suche in Google Scholar
[15] M. Caputo, F. Mainardi, A new dissipation model based on memory mechanism. Pageoph91, No 1 (1971), 134–147, 10.1007/BF00879562.Suche in Google Scholar
[16] A. Gjurchinovski, T. Sandev, V. Urumov, Delayed feedback control of fractional-order chaotic systems. J. Phys. A: Math. Theor. 43, No 44 (2010), # 445102; 10.1088/1751-8113/43/44/445102.Suche in Google Scholar
[17] I. Grigorenko, E. Grigorenko, Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 91, No 3 (2003), # 034101; 10.1103/PhysRevLett.91.034101.Suche in Google Scholar PubMed
[18] R. Herrmann, Fractional Calculus: An Introduction for Physicists. World Scientific, New Jersey (2011).10.1142/8072Suche in Google Scholar
[19] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006).Suche in Google Scholar
[20] R.C. Koeller, Applications of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, No 2 (1984), 299–307; 10.1115/1.3167616.Suche in Google Scholar
[21] K.A. Lazopoulos, A.K. Lazopoulos, Fractional differential geometry of curves & surfaces. Progr. Fract. Differ. Appl. 2, No 3 (2016), 169–186; 10.18576/pfda/020302.Suche in Google Scholar
[22] K.B. Oldham, J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Dover Publications, New York (2006).Suche in Google Scholar
[23] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).Suche in Google Scholar
[24] D.J. Struik, Lectures on Classical Differential Geometry. Dover Publications, New York (1988).Suche in Google Scholar
[25] V.E. Tarasov, Fractional generalization of gradient and Hamiltonian systems. J. Phys. A: Math. Gen. 38, No 26 (2005), 5929–5943; 10.1088/0305-4470/38/26/007.Suche in Google Scholar
[26] V.E. Tarasov, Fractional generalization of gradient systems. Lett. Math. Phys. 73, No 1 (2005), 49–58; 10.1007/s11005-005-8444-z.Suche in Google Scholar
[27] S.I. Vacaru, Fractional dynamics from Einstein gravity, general solutions, and black holes. Int. J. Theor. Phys. 51, No 5 (2012), 1338–1359; 10.1007/s10773-011-1010-9.Suche in Google Scholar
[28] S.I. Vacaru, Fractional nonholonomic Ricci flows. Chaos Soliton. Fract. 45, Nos 9-10 (2012), 1266–1276; 10.1016/j.chaos.2012.06.011.Suche in Google Scholar
[29] T. Yajima, H. Nagahama, Differential geometry of viscoelastic models with fractional-order derivatives. J. Phys. A: Math. Theor. 43, No 38 (2010), # 385207; 10.1088/1751-8113/43/38/385207.Suche in Google Scholar
[30] T. Yajima, H. Nagahama, Geometric structures of fractional dynamical systems in non-Riemannian space: Applications to mechanical and electromechanical systems. Ann. Phys. (Berlin)530, No 5 (2018), # 1700391; 10.1002/andp.201700391.Suche in Google Scholar
[31] T. Yajima, K. Yamasaki, Geometry of surfaces with Caputo fractional derivatives and applications to incompressible two-dimensional flows. J. Phys. A: Math. Theor. 45, No 6 (2012), # 065201; 10.1088/1751-8113/45/6/065201.Suche in Google Scholar
© 2018 Diogenes Co., Sofia
Artikel in diesem Heft
- Frontmatter
- Editorial Note
- FCAA related news, events and books
- Research Paper
- Sensitivity analysis for optimal control problems described by nonlinear fractional evolution inclusions
- Finite-time attractivity for semilinear tempered fractional wave equations
- Geometry of curves with fractional-order tangent vector and Frenet-Serret formulas
- Extrapolating for attaining high precision solutions for fractional partial differential equations
- Time optimal controls for fractional differential systems with Riemann-Liouville derivatives
- Inverses of generators of integrated fractional resolvent operator functions
- A variational approach for boundary value problems for impulsive fractional differential equations
- Infinitely many solutions to boundary value problem for fractional differential equations
- A semi-analytic method for fractional-order ordinary differential equations: Testing results
- Blow-up and global existence of solutions for a time fractional diffusion equation
- A note on the Blaschke-Petkantschin formula, Riesz distributions, and Drury’s identity
- Short Paper
- Fractal dimension of Riemann-Liouville fractional integral of 1-dimensional continuous functions
Artikel in diesem Heft
- Frontmatter
- Editorial Note
- FCAA related news, events and books
- Research Paper
- Sensitivity analysis for optimal control problems described by nonlinear fractional evolution inclusions
- Finite-time attractivity for semilinear tempered fractional wave equations
- Geometry of curves with fractional-order tangent vector and Frenet-Serret formulas
- Extrapolating for attaining high precision solutions for fractional partial differential equations
- Time optimal controls for fractional differential systems with Riemann-Liouville derivatives
- Inverses of generators of integrated fractional resolvent operator functions
- A variational approach for boundary value problems for impulsive fractional differential equations
- Infinitely many solutions to boundary value problem for fractional differential equations
- A semi-analytic method for fractional-order ordinary differential equations: Testing results
- Blow-up and global existence of solutions for a time fractional diffusion equation
- A note on the Blaschke-Petkantschin formula, Riesz distributions, and Drury’s identity
- Short Paper
- Fractal dimension of Riemann-Liouville fractional integral of 1-dimensional continuous functions