Startseite Extrapolating for attaining high precision solutions for fractional partial differential equations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Extrapolating for attaining high precision solutions for fractional partial differential equations

  • Fernanda Simões Patrício EMAIL logo , Miguel Patrício und Higinio Ramos
Veröffentlicht/Copyright: 9. Februar 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper aims at obtaining a high precision numerical approximation for fractional partial differential equations. This is achieved through appropriate discretizations: firstly we consider the application of shifted Legendre or Chebyshev polynomials to get a spatial discretization, followed by a temporal discretization where we use the Implicit Euler method (although any other temporal integrator could be used). Finally, the use of an extrapolation technique is considered for improving the numerical results. In this way a very accurate solution is obtained. An algorithm is presented, and numerical results are shown to demonstrate the validity of the present technique.

Acknowledgements

The third author thanks the support provided by the Vicerrectorado de Investigación y Transferencia of the University of Salamanca.

References

[1] H. Azizi, G.B. Loghmani, A numerical method for space fractional diffusion equations using a semi-disrete scheme and Chebyshev collocation method. J. of Mathematics and Computer Science8 (2014), 226–235.10.22436/jmcs.08.03.05Suche in Google Scholar

[2] R.L. Bagley and P.J. Torvik, On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 51 (1984), 294–298.10.1115/1.3167615Suche in Google Scholar

[3] R.T. Baillie, Long memory processes and fractional integration in econometrics. J. Econometrics73 (1996), 5–59.10.1016/0304-4076(95)01732-1Suche in Google Scholar

[4] E. Barkai, R. Metzler, J. Klafter, From continuous time random walks to the fractional Fokker-Planck equation. Phys. Rev. E61, No 1 (2000), 132–138.10.1103/PhysRevE.61.132Suche in Google Scholar

[5] A.H. Bhrawy, M.M. Al-Shomran, A shifted Legendre spectral method for fractional-order multi-point boundary value problems. Advances in Difference Equations4 (2012), 1–19.10.1186/1687-1847-2012-8Suche in Google Scholar

[6] T.A. Biala, S.N. Jator, Block backward differentiation formulas for fractional differential equations. International J. of Engineering Mathematics, Art. ID 650425 (2015), 1–14.10.1155/2015/650425Suche in Google Scholar

[7] D.W. Brzeziński, Accuracy problems of numerical calculation of fractional order derivatives and integrals applying the Riemann-Liouville/Caputo formulas. Appl. Mathematics and Nonlinear Sciences1 (2016), 23–44.10.21042/AMNS.2016.1.00003Suche in Google Scholar

[8] J.C. Butcher, The role of orthogonal polynomials in numerical ordinary differential equations. J. Comput. Appl. Math. 43 (1992), 231–242.10.1016/0377-0427(92)90268-3Suche in Google Scholar

[9] M. Caputo, Linear model of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astr. Soc. 13 (1967), 529–539.10.1111/j.1365-246X.1967.tb02303.xSuche in Google Scholar

[10] P.J. Davis, Interpolation and Approximation. Dover, New York (1975).Suche in Google Scholar

[11] E. Diekema, The fractional orthogonal derivative. Mathematics3 (2015), 273–298.10.3390/math3020273Suche in Google Scholar

[12] K. Diethelm, The Analysis of Fractional Differential Equations: An application-Oriented Exposition Using Differential Operators of Caputo Type. Lectures Notes in Mathematics. Springer, Berlin (2010).10.1007/978-3-642-14574-2Suche in Google Scholar

[13] F.K. Hamasalh, P.O. Muhammad, Numerical solution of fractional differential equations by using fractional spline model. J. of Information and Computing Science10, No 2 (2015), 98–105.Suche in Google Scholar

[14] V. Gejji, H. Jafari, Solving a multi-order fractional differential equation using Adomian decomposition. Appl. Math. and Computation189, No 1 (2007), 541–548.10.1016/j.amc.2006.11.129Suche in Google Scholar

[15] S. Kazem, Exact solution of some linear fractional differential equations by Laplace transform. Intern. J. of Nonlinear Science16, No 1 (2013), 3–11.Suche in Google Scholar

[16] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. 1st Ed., Elsevier (2006).Suche in Google Scholar

[17] J.D. Lambert, Computational Methods in Ordinary Differential Equations. John Wiley & Sons (1974).Suche in Google Scholar

[18] F. Liu, V. Anh, I. Turner, Numerical solution of the space fractional Fokker-Planck equation. J. of Comput. and Appl. Math. 166, No 1 (2004), 209–219.10.1016/j.cam.2003.09.028Suche in Google Scholar

[19] J.T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 1140–1153.10.1016/j.cnsns.2010.05.027Suche in Google Scholar

[20] W. Gautschi, Orthogonal Polynomials. Computation and Approximation. Oxford University Press, Oxford (2004).10.1093/oso/9780198506720.001.0001Suche in Google Scholar

[21] M.M. Khader, N.H. Sweilam, A.M.S. Mahdy, An efficient numerical method for solving the fractional diffusion equation. J. of Appl. Math. & Bioinformatics1, No 2 (2011), 1–12.10.3366/nor.2011.0002Suche in Google Scholar

[22] M.M. Khader, T.S.E. Danaf, A.S. Hendy, Efficient spectral collocation method for solving multi-term fractional differential equations based on the generalized Laguerre polynomials. J. of Fractional Calculus and Applications3, No 13 (2012), 1–14.Suche in Google Scholar

[23] M. Klimek, On Solutions of Linear Fractional Differential Equations of a Variational Type. The Publ. Office of Czestochowa University of Technology (2009).Suche in Google Scholar

[24] A. Pedas, E. Tamme, Numerical solution of nonlinear fractional differential equations by spline collocation methods. J. of Comput. and Appl. Math. 255 (2014), 216–230.10.1016/j.cam.2013.04.049Suche in Google Scholar

[25] I. Podlubny, Fractional Differential Equations. Ser. Mathematics in Science and Engineering # 198, Academic Press Inc., San Diego, CA, (1999).Suche in Google Scholar

[26] J. Sabatier, P. Lanusse, P. Melchior, A. Oustaloup, Fractional Order Differentiation and Robust Control Design. International Ser. on Intelligent Systems, Control and Automation - Science and Engineering # 77, Springer (2015).10.1007/978-94-017-9807-5Suche in Google Scholar

[27] M. Safari, M. Danesh, Application of Adomian’s decomposition method for the analytical solution of space fractional diffusion. Advances in Pure Mathematics1 (2011), 345–350.10.4236/apm.2011.16062Suche in Google Scholar

[28] S.G. Samko, A.A. Kilbas, and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993).Suche in Google Scholar

[29] M.N. Sherif, I. Abouelfarag, T.S. Amer, Numerical solution of fractional delay differential equations using spline functions. Internat. J. of Pure and Appl. Math. 90 (2014), 73–83.10.12732/ijpam.v90i1.10Suche in Google Scholar

[30] G. Szegö, Orthogonal Polynomials, 4th Ed. American Mathematical Society, Providence, Rhode Island (1975).Suche in Google Scholar

[31] Y. Yang, Multi-order fractional differential equation using Legendre pseudo-spectral method. Applied Mathematics4 (2013), 113–118.10.4236/am.2013.41020Suche in Google Scholar

[32] S.B. Yuste, L. Acedo, K. Lindenberg, Reaction front in an A + BC reaction-subdiffusion process. Phys. Rev., E69, No 3 (2004), 1–10.Suche in Google Scholar

[33] S.B. Yuste, K. Lindenberg, Subdiffusion-limited A + A reactions. Phys. Rev. Lett., 87, No 11 (2001), 1–4.10.1002/9783527622979.ch13Suche in Google Scholar

[34] M. Zayernouri, G. Karniadakis, Fractional spectral collocation method. SIAM J. Sci. Comput. 36, No 1 (2014), A40–A62.10.1137/130933216Suche in Google Scholar

[35] M. Zayernouri, M. Ainsworth, G.E. Karniadakis, A unified Petrov-Galerkin spectral method for fractional PDEs. Computer Methods in Applied Mechanics and Engineering283 (2015), 1545–1569.10.1016/j.cma.2014.10.051Suche in Google Scholar

Received: 2017-09-16
Published Online: 2019-02-09
Published in Print: 2018-12-19

© 2018 Diogenes Co., Sofia

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2018-0079/html
Button zum nach oben scrollen