Startseite Finite-time attractivity for semilinear tempered fractional wave equations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Finite-time attractivity for semilinear tempered fractional wave equations

  • Tran Dinh Ke EMAIL logo und Nguyen Nhu Quan
Veröffentlicht/Copyright: 9. Februar 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We prove the existence and finite-time attractivity of solutions to semilinear tempered fractional wave equations with sectorial operator and superlinear nonlinearity. Our analysis is based on the α-resolvent theory, the fixed point theory for condensing maps and the local estimates of solutions. An application to a class of partial differential equations will be given.

References

[1] M. Abbaszadeh, M. Dehghan, An improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimate. Numer. Algor. 75 (2017), 173–211.10.1007/s11075-016-0201-0Suche in Google Scholar

[2] M.S. Alrawashdeh, J.F. Kelly, M.M. Meerschaert, H.P. Scheffler, Applications of inverse tempered stable subordinators. Comput. Math. Appl. 73 (2017), 892–905.10.1016/j.camwa.2016.07.026Suche in Google Scholar

[3] N.T. Anh, T.D. Ke, Decay integral solutions for neutral fractional differential equations with infinite delays. Math. Methods Appl. Sci. 38 (2015), 1601–1622.10.1002/mma.3172Suche in Google Scholar

[4] E.G. Bajlekova, Fractional Evolution Equations in Banach Spaces. Dissertation, Univ. Press Facilities, Eindhoven University of Technology (2001).Suche in Google Scholar

[5] E.G. Bazhlekova, Subordination in a class of generalized time-fractional diffusion-wave equations. Fract. Calc. Appl. Anal. 21, No 4 (2018), 869–900; 10.1515/fca-2018-0048; https://www.degruyter.com/view/j/fca.2018.21.issue-4/issue-files/fca.2018.21.issue-4.xml.Suche in Google Scholar

[6] M. Chen, W. Deng, A second-order accurate numerical method for the space-time tempered fractional diffusion-wave equation. Appl. Math. Lett. 68 (2017), 87–93.10.1016/j.aml.2016.12.010Suche in Google Scholar

[7] J. Deng, L. Zhao, Y. Wu, Fast predictor-corrector approach for the tempered fractional differential equations. Numer. Algor. 74 (2017), 717–754.10.1007/s11075-016-0169-9Suche in Google Scholar

[8] P. Giesl, M. Rasmussen, Areas of attraction for nonautonomous differential equations on finite time intervals. J. Math. Anal. Appl. 390 (2012), 27–46.10.1016/j.jmaa.2011.12.051Suche in Google Scholar

[9] W. Fan, F. Liu, X. Jiang, I. Turner, A novel unstructured mesh finite element method for solving the time-space fractional wave equation on a two-dimensional irregular convex domain. Fract. Calc. Appl. Anal. 20, No 2 (2017), 352–383; 10.1515/fca-2017-0019; https://www.degruyter.com/view/j/fca.2017.20.issue-2/issue-files/fca.2017.20.issue-2.xml.Suche in Google Scholar

[10] A. Hanyga, Wave propagation in media with singular memory. Math. Comput. Model. 34 (2001), 1399–1421.10.1016/S0895-7177(01)00137-6Suche in Google Scholar

[11] M. Kamenskii, V. Obukhovskii, P. Zecca, Condensing multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. Walter de Gruyter, Berlin, New York (2001).10.1515/9783110870893Suche in Google Scholar

[12] T.D. Ke, D. Lan, Decay integral solutions for a class of impulsive fractional differential equations in Banach spaces. Fract. Calc. Appl. Anal. 17, No 1 (2014), 96–121; 10.2478/s13540-014-0157-5; https://www.degruyter.com/view/j/fca.2014.17.issue-1/issue-files/fca.2014.17.issue-1.xml.Suche in Google Scholar

[13] J. Kemppainen, Solvability of a Dirichlet problem for a time fractional diffusion-wave equation in Lipschitz domains. Fract. Calc. Appl. Anal. 15, No 2 (2012), 195–206; 10.2478/s13540-012-0014-3;Suche in Google Scholar

[14] Y. Kian, M. Yamamoto, On existence and uniqueness of solutions for semilinear fractional wave equations. Fract. Calc. Appl. Anal. 20, No 1 (2017), 117–138; 10.1515/fca-2017-0006; https://www.degruyter.com/view/j/fca.2017.20.issue-1/issue-files/fca.2017.20.issue-1.xml.Suche in Google Scholar

[15] A.N. Kochubei, Asymptotic properties of solutions of the fractional diffusion-wave equation. Fract. Calc. Appl. Anal. 17, No 3 (2014), 881–896; 10.2478/s13540-014-0203-3; https://www.degruyter.com/view/j/fca.2014.17.issue-3/issue-files/fca.2014.17.issue-3.xml.Suche in Google Scholar

[16] Y.-N. Li, H.-R. Sun, Z.S. Feng, Fractional abstract Cauchy problem with order α ∈ (1, 2). Dyn. Partial Differ. Equ. 13, No 2 (2016), 155–177.10.4310/DPDE.2016.v13.n2.a4Suche in Google Scholar

[17] C. Li, W. Deng, High order schemes for the tempered fractional diffusion equations. Adv. Comput. Math. 42 (2016), 543–572.10.1007/s10444-015-9434-zSuche in Google Scholar

[18] Yu. Luchko, Fractional wave equation and damped waves. J. Math. Phys. 54 (2013), 031505.10.1063/1.4794076Suche in Google Scholar

[19] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010).10.1142/p614Suche in Google Scholar

[20] M.M. Meerschaert, F. Sabzikar, M.S. Phanikumar, A. Zeleke, Tempered fractional time series model for turbulence in geophysical flows. J. of Statistical Mechanics: Theory and Experiment14 (2014), 1742–5468.10.1088/1742-5468/2014/09/P09023Suche in Google Scholar

[21] M.M. Meerschaert, Y. Zhang, B. Baeumer, Tempered anomalous diffusion in heterogeneous systems. Geophys. Res. Lett. 35 (2008), L17403.10.1029/2008GL034899Suche in Google Scholar

[22] I. Podlubny, Fractional differential equations. Academic Press, New York (1999).Suche in Google Scholar

[23] Y. Povstenko, Solutions to the fractional diffusion-wave equation in a wedge. Fract. Calc. Appl. Anal. 17, No 1 (2014), 122–135; 10.2478/s13540-014-0158-4; https://www.degruyter.com/view/j/fca.2014.17.issue-1/issue-files/fca.2014.17.issue-1.xml.Suche in Google Scholar

[24] F. Sabzikar, M.M. Meerschaert, J.H. Chen, Tempered fractional calculus. J. Comput. Phys. 293 (2015), 14–28.10.1016/j.jcp.2014.04.024Suche in Google Scholar PubMed PubMed Central

[25] K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382 (2011), 426–447.10.1016/j.jmaa.2011.04.058Suche in Google Scholar

[26] S. Samko, A. Kilbas, O. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, London (1993).Suche in Google Scholar

[27] T.I. Seidman, Invariance of the reachable set under nonlinear perturbations. SIAM J. Control Optim. 25 (1987), 1173–1191.10.1137/0325064Suche in Google Scholar

[28] I.I. Vrabie, C0-Semigroups and Applications. North-Holland Publishing Co., Amsterdam (2003).Suche in Google Scholar

[29] H. Ye, J. Gao and Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328 (2007), 1075–1081.10.1016/j.jmaa.2006.05.061Suche in Google Scholar

[30] Y. Zhou, Attractivity for fractional evolution equations with almost sectorial operators. Fract. Calc. Appl. Anal. 21, No 3 (2018), 786–800; 10.1515/fca-2018-0041; https://www.degruyter.com/view/j/fca.2018.21.issue-3/issue-files/fca.2018.21.issue-3.xml.Suche in Google Scholar

Received: 2017-09-10
Published Online: 2019-02-09
Published in Print: 2018-12-19

© 2018 Diogenes Co., Sofia

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2018-0077/pdf?lang=de
Button zum nach oben scrollen