Startseite Sensitivity analysis for optimal control problems described by nonlinear fractional evolution inclusions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Sensitivity analysis for optimal control problems described by nonlinear fractional evolution inclusions

  • Xiuwen Li EMAIL logo , Yunxiang Li , Zhenhai Liu und Jing Li
Veröffentlicht/Copyright: 9. Februar 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, a sensitivity analysis of optimal control problem for a class of systems described by nonlinear fractional evolution inclusions (NFEIs, for short) on Banach spaces is investigated. Firstly, the nonemptiness as well as the compactness of the mild solutions set S(ζ) (ζ being the initial condition) for the NFEIs are obtained, and we also present an extension Filippov’s theorem and whose proof differs from previous work only in some technical details. Finally, the optimal control problems described by NFEIs depending on the initial condition ζ and the parameter η are considered and the sensitivity properties of the optimal control problem are also established.

Acknowledgements

The author thanks for the support supported by NNSF of China Grants Nos. 11671101, 11661001, NSF of Guangxi (2018GXNSFDA138002), NSF of Hunan (2018JJ3519), the Project of Guangxi Education Department grant No. KY2016YB417 and the funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie (823731 CONMECH).

References

[1] J.P. Aubin, A. Cellina, Differential Inclusions. Springer-Verlag, Berlin (1984).10.1007/978-3-642-69512-4Suche in Google Scholar

[2] E. Balder, Necessary and sufficient conditions for L1-strong-weak lower semicontinuity of integral functional. Nonlinear Anal.: RWA11 (1987), 1399–1404.10.1016/0362-546X(87)90092-7Suche in Google Scholar

[3] D. Baleanu, A.K. Golmankhaneh, On electromagnetic field in fractional space. Nonlinear Anal.: RWA11, No 1 (2010), 288–292.10.1016/j.nonrwa.2008.10.058Suche in Google Scholar

[4] J. Banas, K. Goebal, Measure of Noncompactness in Banach Spaces. Marcel Dekker Inc., New York (1980).Suche in Google Scholar

[5] I. Benedetti, N.V. Loi, L. Malaguti, Nonlocal problems for differential inclusions in Hilbert spaces. Set-Valued Var. Anal. 22 (2014), 639–656.10.1007/s11228-014-0280-9Suche in Google Scholar

[6] I. Benedetti, L. Malaguti, V. Taddei, Semilinear evolution equations in abstract spaces and applications. Rend. Istit. Mat. Univ. Trieste44 (2012), 371–388.Suche in Google Scholar

[7] Y. Cheng, R.P. Agarwal, D. O’Regan, Existence and controllability for nonlinear fractional differential inclusions with nonlinear boundary conditions and time-varying delay. Fract. Calc. Appl. Anal. 21, No 4 (2018), 960-980; 10.1515/fca-2018-0053; https://www.degruyter.com/view/j/fca.2018.21.issue-4/issue-files/fca.2018.21.issue-4.xml.Suche in Google Scholar

[8] Z. Denkowski, S. Migórski, N. Papageorgiu, An Introduction to Nonlinear Analysis (Theory). Kluwer Academic/Plenum Publishers, Boston (2003).10.1007/978-1-4419-9158-4Suche in Google Scholar

[9] H. Frankowska, A priori estimates for operational differential inclusions. J. Diff. Equat. 84 (1990), 100–128.10.1016/0022-0396(90)90129-DSuche in Google Scholar

[10] S. Hu, N.S. Papageorgiou, Handbook of Multivalued Analysis (Theory). Kluwer Acad. Publishers, Dordrecht-Boston- London (1997).10.1007/978-1-4615-6359-4Suche in Google Scholar

[11] K. Ito, K. Kunisch, Sensitivity analysis of solutions to optimization problems in Hilbert spaces with applications to optimal control and estimation. J. Diff. Equat. 99 (1992), 1–40.10.1016/0022-0396(92)90133-8Suche in Google Scholar

[12] M. Kamenskii, V. Obukhovskii, P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. Walter de Gruyter, Berlin (2001).10.1515/9783110870893Suche in Google Scholar

[13] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Ser. North-Holland Mathematics Studies # 204, Elservier Science B.V., Amsterdam (2006).Suche in Google Scholar

[14] V. Lakshmikantham, A.S. Vatsala, Basic theory of fractional differential equations. Nonlinear Anal. 69 (2008), 2677–2682.10.1016/j.na.2007.08.042Suche in Google Scholar

[15] J. Li, F.Liu, L. Feng, I. Turner, A novel finite volume method for the Riesz space distributed-order diffusion equation. Comput. Math. Appl. 74 (2017), 772–783.10.1016/j.camwa.2017.05.017Suche in Google Scholar

[16] X.W. Li, Z.H. Liu, Sensitivity analysis of optimal control problems described by differential hemivariational inequalities. SIAM J. Control Optim. 56, No 5 (2018), 3569–3597.10.1137/17M1162275Suche in Google Scholar

[17] X.Y. Liu, Z.H. Liu, X. Fu, Relaxation in nonconvex optimal control problems described by fractional differential equations. J. Math. Anal. Appl. 409, No 1 (2014), 446–458.10.1016/j.jmaa.2013.07.032Suche in Google Scholar

[18] Z.H. Liu, X.W. Li, Approximate controllability of fractional evolution systems with Riemann-Liouville fractional derivatives. SIAM J. Control Optim. 53, No 4 (2015), 1920–1933.10.1137/120903853Suche in Google Scholar

[19] Z.H. Liu, S.D. Zeng, Y.R. Bai, Maximum principles for multi-term space-time variable-order fractional diffusion equations and their applications. Fract. Calc. Appl. Anal. 19, No 1 (2016), 188–211; 10.1515/fca-2016-0011; https://www.degruyter.com/view/j/fca.2016.19.issue-1/issue-files/fca.2016.19.issue-1.xml.Suche in Google Scholar

[20] N.I. Mahmudov, Finite-approximate controllability of fractional evolution equations: variational approach. Fract. Calc. Appl. Anal. 21, No 4 (2018), 919–936; 10.1515/fca-2018-0050; https://www.degruyter.com/view/j/fca.2018.21.issue-4/issue-files/fca.2018.21.issue-4.xml.Suche in Google Scholar

[21] F. Mainardi, On the initial value problem for the fractional diffusion-wave equation. Adv. Math. Appl. Sci. 23 (1994), 246–251.Suche in Google Scholar

[22] I. Matychyn, V. Onyshchenko, Optimal control of linear systems with fractional derivatives. Fract. Calc. Appl. Anal. 21, No 1 (2018), 134–150; 10.1515/fca-2018-0009; https://www.degruyter.com/view/j/fca.2018.21.issue-4/issue-files/fca.2018.21.issue-4.xml.Suche in Google Scholar

[23] S. Migórski, Sensitivity analysis of distributed-parameter optimal control problems for nonlinear parabolic equations. J. Optim. Theory Appl. 87 (1995), 595–613.10.1007/BF02192136Suche in Google Scholar

[24] S. Migórski, A. Ochal, M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems. Ser. Advances in Mechanics and Mathematics #26, Springer, New York (2013).10.1007/978-1-4614-4232-5Suche in Google Scholar

[25] N.S. Papageorgiou, Sensitivity analysis of evolution inclusions and its applications to the variational stability of optimal control problems. Houston J. Math. 16 (1990), 509–522.Suche in Google Scholar

[26] N.S. Papageorgiou, On the variational stability of a class of nonlinear parabolic optimal control problems. Zeitsch. Anal. Anwend. 15 (1996), 245–262.10.4171/ZAA/697Suche in Google Scholar

[27] N.S. Papageorgiou, S. Kyritsi, Handbook of Applied Analysis. Springer, New York (2009).10.1007/b120946Suche in Google Scholar

[28] N.S. Papageorgiou, V.D. Radulescu, D.D. Repovš, Sensitivity analysis for optimal control problems governed by nonlinear evolution inclusions. Advances in Nonlinear Anal. 6, No 2 (2017), 199–235.10.1515/anona-2016-0096Suche in Google Scholar

[29] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).Suche in Google Scholar

[30] H.P. Ye, J.M. Gao, Y.S. Ding, A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328 (2007), 1075–1081.10.1016/j.jmaa.2006.05.061Suche in Google Scholar

[31] Y. Zhou, F. Jiao, Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59 (2010), 1063–1077.10.1016/j.camwa.2009.06.026Suche in Google Scholar

[32] Q.J. Zhu, On the solution set of differential inclusions in Banach space. J. Diff. Equat. 93 (1991), 213–237.10.1016/0022-0396(91)90011-WSuche in Google Scholar

Received: 2017-07-10
Published Online: 2019-02-09
Published in Print: 2018-12-19

© 2018 Diogenes Co., Sofia

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2018-0076/pdf?lang=de
Button zum nach oben scrollen