Startseite Functional delay fractional equations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Functional delay fractional equations

  • Tadeusz Jankowski
Veröffentlicht/Copyright: 27. August 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper we discuss functional delay fractional equations. A Banach fixed point theorem is applied to obtain the existence (uniqueness) theorem. We also discuss such problems when a delay argument has a form α(t) = αt, 0 < α < 1, by using the method of successive approximations. Some existence results are also formulated in this case. An example illustrates the main result.

MSC 2010: 34K37; 34K40

References

[1] D. Baleanu, K. Diethelm, E. Scalas and J.J. Trujillo, Fractional Calculus, Models and Numerical Methods. Ser. on Complexity, Nonlinearity and Chaos Vol. 3, World Scientific Publishing Co, NJ (2012).10.1142/8180Suche in Google Scholar

[2] T. Jankowski, M. Kwapisz, On the existence and uniqueness of solutions of systems of differential equations with a deviated argument. Ann. Polon. Math. 26 (1972), 253–277.10.4064/ap-26-3-253-277Suche in Google Scholar

[3] T. Jankowski, Fractional differential equations with deviating arguments. Dynam. Systems Appl. 17 (2008), 677–684.Suche in Google Scholar

[4] T. Jankowski, Initial value problems for neutral fractional differential equations involving a Riemann Liouville derivative. Appl. Math. Comput. 219 (2013), 7772–7776.10.1016/j.amc.2013.02.001Suche in Google Scholar

[5] T. Jankowski, Existence results to delay fractional differential equations with nonlinear boundary conditions. Appl. Math. Comput. 219 (2013), 9155–9164.10.1016/j.amc.2013.03.045Suche in Google Scholar

[6] T. Jankowski, Fractional problems with advanced arguments. Appl. Math. Comput. 230 (2014), 371–382.10.1016/j.amc.2013.12.033Suche in Google Scholar

[7] A.A. Kilbas, H.R. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Ser. North–Holland Mathematics Studies 204, Elsevier, Amsterdam (2006).Suche in Google Scholar

[8] V. Lakshmikantham, S. Leela and J. Vasundhara, Theory of Fractional Dynamic Systems. Cambridge Academic Publishers, Cambridge (2009).Suche in Google Scholar

[9] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).Suche in Google Scholar

[10] G. Wang, Monotone iterative technique for boundary value problems of a nonlinear fractional differential equations with deviating arguments. J. Comput. Appl. Math. 236 (2012), 2425–2430.10.1016/j.cam.2011.12.001Suche in Google Scholar

Received: 2015-4-3
Published Online: 2016-8-27
Published in Print: 2016-8-1

© 2016 Diogenes Co., Sofia

Heruntergeladen am 28.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2016-0057/html?lang=de
Button zum nach oben scrollen