Home Generalization of the fractional poisson distribution
Article
Licensed
Unlicensed Requires Authentication

Generalization of the fractional poisson distribution

  • Richard Herrmann EMAIL logo
Published/Copyright: August 27, 2016

Abstract

A generalization of the Poisson distribution based on the generalized Mittag-Leffler function Eα,β(λ) is proposed and the raw moments are calculated algebraically in terms of Bell polynomials. It is demonstrated, that the proposed distribution function contains the standard fractional Poisson distribution as a subset. A possible interpretation of the additional parameter β is suggested.

Acknowledgements

We thank A. Friedrich for valuable discussions.

References

[1] E. T. Bell, Exponential polynomials. Ann. Math. 35, No 2 (1934), 258–277.10.2307/1968431Search in Google Scholar

[2] S. Chakraborty, S. H. Ong, Mittag-Leffler function distribution - A new generalization of hyper-Poisson distribution. arXiv:1411.0980 [math.ST] (2014).10.1186/s40488-017-0060-9Search in Google Scholar

[3] G. Dobinski, Summirung der Reihe Σ nm/n! für m = 1,2,3,4,5, ... . Grunert Archiv (Arch. Math. Phys.)61 (1877), 333–336.Search in Google Scholar

[4] R. Garra, E. Orsingher, Random flights governed by Klein-Gordon-type partial differential equations. Stoch. Proc. Appl. 124 (2014), 2171–2187; 10.1016/j.spa.2014.02.004.Search in Google Scholar

[5] R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin (2014).10.1007/978-3-662-43930-2Search in Google Scholar

[6] R. Gorenflo, F. Mainardi, On the fractional Poisson process and the discretized stable subordinator. Axioms4 (2015), 321–344; 10.3390/axioms4030321.Search in Google Scholar

[7] H. J. Haubold, A. M. Mathai, R. K. Saxena, Mittag-Leffler functions and their applications. Journal of Applied Mathemathics2011 (2011), Article ID 298628; 10.1155/2011/298628.Search in Google Scholar

[8] A. A. Kilbas, A. A. Koroleva, S. S. Rogosin, Multi-parameter Mittag-Leffler functions and their extension. Fract. Calc. Appl. Anal. 16, No 2 (2013), 378–404; 10.2478/s13540-013-0024-9; http://www.degruyter.com/view/j/fca.2013.16.issue-2/issue-files/fca.2013.16.issue-2.xml.Search in Google Scholar

[9] V. Kiryakova, Multi-indexed Mittag-Leffler functions, related Gelfond-Leontiev operators and Laplace type transforms. Fract. Calc. Appl. Anal. 2, No 4 (1999), 445–462.Search in Google Scholar

[10] N. Laskin, Fractional Poisson process. Commun. Nonlin. Sci. Num. Sim. 8 (2003), 201–213; 10.1016/S1007-5704(03)00037-6.Search in Google Scholar

[11] N. Laskin, Some applications of the fractional Poisson probability distribution. J. Math. Phys. 50 (2009), 113513; /10.1063/1.3255535.Search in Google Scholar

[12] F. Mainardi, R. Gorenflo, E. Scalas, A fractional generalization of the Poisson processes. Vietnam Journal of Mathematics32, SI (2004), 53–64; E-print http://arxiv.org/abs/math/0701454.Search in Google Scholar

[13] M. M. Meerschaert, D. A. Benson, B. Bäumer, Multidimensional advection and fractional dispersion. Phys. Rev. E59 (1999), 5026; 10.1103/PhysRevE.59.5026.Search in Google Scholar PubMed

[14] M. M. Meerschaert, E. Nane, P. Vellaisamy, The fractional Poisson process and the inverse stable subordinator, Electronic Journal of Probability16, No 59 (2011), 1600–1620; see also arXiv:1007.5051[math.PR].10.1214/EJP.v16-920Search in Google Scholar

[15] R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000), 1–77; 10.1016/S0370-1573(00)00070-3.Search in Google Scholar

[16] M. G. Mittag-Leffler, Sur la nouvelle function Eα(x). Comptes Rendus Acad. Sci. Paris137 (1903), 554–558.Search in Google Scholar

[17] J. D. Murray, Mathematical Biology I: An Introduction. 3th Ed., Springer, Berlin (2008).Search in Google Scholar

[18] I. Podlubny, Fractional Differential Equations. Academic Press, Boston (1999).Search in Google Scholar

[19] M. Politi, T. Kaizoji, E. Scalas, Full characterization of the fractional Poisson process. EPL96 (2011), 20004; 10.1209/0295-5075/96/20004.Search in Google Scholar

[20] O. N. Repin, A. I. Saichev, Fractional Poisson law. Radiophys. Quant. Electron. 43 (2000), 738–741; 10.1023/A:1004890226863.Search in Google Scholar

[21] S. Roman, ”The Exponential Polynomials” and ”The Bell Polynomials”, 4.1.3 and 4.1.8. In: The Umbral Calculus. Academic Press, New York (1984), 63–67 and 82–87.Search in Google Scholar

[22] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives. Gordon and Breach, Yverdon (1993); Transl. and extended from the 1987 Russian original.Search in Google Scholar

[23] J. M. Sixdeniers, K. A. Penson, A. I. Solomon, Mittag-Leffler coherent states. J. Phys. A.: Math. Gen. 32 (1999), 7543; 10.1088/0305-4470/32/43/308.Search in Google Scholar

[24] J. Stirling, Methodus differentialis, Sive tractatus de summatione et interpolatione serierum infinitarium, London (1730); English transl. by J. Holliday, The Differential Method: A Treatise of the Summation and Interpolation of Infinite Series (1749).Search in Google Scholar

[25] V. V. Uchaikin, D. O. Cahoy, R. T. Sibatov, Fractional processes: from Poisson to branching one. Int. J. Bifurcation Chaos18, No 9 (2008), 2717–2725; 10.1142/S0218127408021932; arXiv:1002.2511v1.Search in Google Scholar

[26] G. C. Wick, The evaluation of the collision matrix. Phys. Rev. 80 (1950), 268; 10.1103/PhysRev.80.268.Search in Google Scholar

[27] A. Wiman, Über den Fundamentalsatz in der Theorie der Funktionen Eα(x). Acta Math. 29 (1905), 191–201; 10.1007/BF02403202.Search in Google Scholar

Received: 2015-3-10
Published Online: 2016-8-27
Published in Print: 2016-8-1

© 2016 Diogenes Co., Sofia

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. FCAA Related News, Events and Books (FCAA–Volume 19–4–2016)
  4. Survey Paper
  5. Responses comparison of the two discrete-time linear fractional state-space models
  6. Survey Paper
  7. A survey on impulsive fractional differential equations
  8. Research Paper
  9. Generalization of the fractional poisson distribution
  10. Research Paper
  11. Diffusivity identification in a nonlinear time-fractional diffusion equation
  12. Research Paper
  13. An extension problem for the fractional derivative defined by Marchaud
  14. Research Paper
  15. Strong maximum principle for fractional diffusion equations and an application to an inverse source problem
  16. Research Paper
  17. The Neumann problem for the generalized Bagley-Torvik fractional differential equation
  18. Research Paper
  19. On the fractional probabilistic Taylor's and mean value theorems
  20. Research Paper
  21. Time-fractional heat conduction in a two-layer composite slab
  22. Research Paper
  23. Weighted adams type theorem for the riesz fractional integral in generalized morrey space
  24. Research Paper
  25. Fractional schrödinger equation with zero and linear potentials
  26. Research Paper
  27. Positive solutions of higher-order nonlinear multi-point fractional equations with integral boundary conditions
  28. Research Paper
  29. Weighted bounded solutions for a class of nonlinear fractional equations
  30. Research Paper
  31. Existence and global asymptotic behavior of positive solutions for superlinear fractional dirichlet problems on the half-line
  32. Short Paper
  33. Functional delay fractional equations
Downloaded on 26.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/fca-2016-0045/html
Scroll to top button