Home Existence and uniqueness of global solutions of caputo-type fractional differential equations
Article
Licensed
Unlicensed Requires Authentication

Existence and uniqueness of global solutions of caputo-type fractional differential equations

  • Chung-Sik Sin EMAIL logo and Liancun Zheng
Published/Copyright: June 23, 2016

Abstract

In this paper we consider initial value problems for fractional differential equations involving Caputo differential operators. By establishing a new property of the Mittag-Leffler function and using the Schauder fixed point theorem, we obtain new sufficient conditions for the existence and uniqueness of global solutions of initial value problems.

Acknowledgements

The authors would like to thank Prof. Fawang Liu, Prof. Virginia Kiryakova and Prof. Kai Diethelm for their help and advices for the improvement of this article.

The work is supported by the National Natural Science Foundations of China (No. 51276014, 51476191).

References

[1] A. Aghajani, E. Pourhadi, J.J. Trujillo, Application of measure of noncompactness to a Cauchy problem for fractional differential equations in Banach spaces. Fract. Calc. Appl. Anal.16, No 4 (2013), 962–977; DOI: 10.2478/s13540-013-0059-y; http://www.degruyter.com/view/j/fca.2013.16.issue-4/issue-files/fca.2013.16.issue-4.xmlSearch in Google Scholar

[2] K. Diethelm, The Analysis of Fractional Differential Equations. Springer, Berlin, 2010; http://www.springerlink.com/content/978-3-642-14573-510.1007/978-3-642-14574-2Search in Google Scholar

[3] K. Diethelm, The mean value theorems and a Nagumo-type uniqueness theorem for Caputo's fractional calculus. Fract. Calc. Appl. Anal.15, No 2 (2012), 304–313; DOI: 10.2478/s13540-012-0022-3; http://www.degruyter.com/view/j/fca.2012.15.issue-2/issue-files/fca.2012.15.issue-2.xmlSearch in Google Scholar

[4] K. Diethelm, N.J. Ford, Analysis of fractional differential equations. J. Math. Anal. Appl.265 (2002), 229–24810.1007/978-3-642-14574-2Search in Google Scholar

[5] R.A.C. Ferreria, A uniqueness result for a fractional differential equation. Fract. Calc. Appl. Anal.15, No 4 (2012), 611–615; DOI: 10.2478/s13540-012-0042-z; http://www.degruyter.com/view/j/fca.2012.15.issue-4/issue-files/fca.2012.15.issue-4.xmlSearch in Google Scholar

[6] R. Gorenflo, A.A Kilbas, F. Mainardi, S.V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications. Springer, 2014; http://www.springer.com/mathematics/analysis/book/978-3-662-43929-610.1007/978-3-662-43930-2Search in Google Scholar

[7] H.J. Haubold, A.M. Mathai, R.K. Saxena, Mittag-Leffler functions and their applications. J. Appl. Math.2011 (2011), Article ID 298628, 51 pages; DOI: 10.1155/2011/298628Search in Google Scholar

[8] D. Idczak, R. Kamocki, On the existence and uniqueness and formula for the solution of R-L fractional Cauchy problem in Rn. Fract. Calc. Appl. Anal.14, No 4 (2011), 538–553; DOI: 10.2478/s13540-011-0033-5; http://www.degruyter.com/view/j/fca.2011.14.issue-4/issue-files/fca.2011.14.issue-4.xmlSearch in Google Scholar

[9] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam, 2006Search in Google Scholar

[10] V. Lakshmikantham, S. Leela, Nagumo-type uniqueness result for fractional differential equations. Nonlinear Anal., Theory Methods Appl.71 (2009), 2886–288910.1016/j.na.2009.01.169Search in Google Scholar

[11] V. Lakshmikantham, S. Leela, A Krasnoselskii-Krein-type uniqueness result for fractional differential equations. Nonlinear Anal., Theory Methods Appl.71 (2009), 3421–342410.1016/j.na.2009.02.008Search in Google Scholar

[12] W. Lin, Global existence theory and chaos control of fractional differential equations. J. Math. Anal. Appl.332 (2007), 709–72610.1016/j.jmaa.2006.10.040Search in Google Scholar

[13] F. Mainardi, An historical perspective on fractional calculus in linear viscoelasticity. Fract. Calc. Appl. Anal.15, No 4 (2012), 712–717; DOI: 10.2478/s13540-012-0048-6; http://www.degruyter.com/view/j/fca.2012.15.issue-4/issue-files/fca.2012.15.issue-4.xmlSearch in Google Scholar

[14] I. Podlubny, Fractional Differential Equations. Academic Press, New York, 1999Search in Google Scholar

Received: 2015-4-17
Revised: 2015-11-21
Published Online: 2016-6-23
Published in Print: 2016-6-1

© 2016 Diogenes Co., Sofia

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/fca-2016-0040/html
Scroll to top button