Home United lattice fractional integro-differentiation
Article
Licensed
Unlicensed Requires Authentication

United lattice fractional integro-differentiation

  • Vasily E. Tarasov EMAIL logo
Published/Copyright: June 28, 2016

Abstract

New fractional operators of non-integer and integer orders for N-dimensional lattice ℤN are suggested. The proposed lattice fractional integro-differentiation of positive order can be considered as a lattice analog of partial derivatives of non-integer orders. For negative values of order, it can be considered as a lattice fractional integration. For integer orders, the continuum limit of the united lattice derivatives gives the usual partial derivatives of integer orders. In contrast to the usual lattice derivatives, which are proposed in our recent paper (“Lattice fractional calculus”, Appl. Math. Comp. 257 (2015), 12–33), the suggested lattice operators give the usual partial derivatives for all integer orders. The united lattice integro-differentiation is represented by finite differences with infinite series that describe long-range lattice interactions. The suggested lattice operators of positive orders can be considered as an exact discretization of derivatives of corresponding orders. The basic mathematical feature of these united lattice operators is an implementation of the same algebraic properties that have the differentiation operator.


Dedicated to Professor Stefan G. Samko on the occasion of his 75th anniversary


References

[1] Atanackovic T.M. Pilipovic S. Stankovic B. Zorica D. Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles Wiley-ISTE London-Hoboken 201410.1002/9781118909065Search in Google Scholar

[2] Cargo G.T. Shisha O. Zeros of polynomials and fractional order differences of their coefficients J. Math. Anal. Appl. 7 No 2 1963 176 18210.1016/0022-247X(63)90046-5Search in Google Scholar

[3] Carpinteri A. Mainardi F. (Eds.) Fractals and Fractional Calculus in Continuum Mechanics Springer New York 199710.1007/978-3-7091-2664-6Search in Google Scholar

[4] Diaz J.B. Osler T.J. Differences of fractional order Math. Comp. 28 No 125 1974 185 20210.1090/S0025-5718-1974-0346352-5Search in Google Scholar

[5] P.Dirac A.M. The fundamental equations of quantum mechanics Proc. Royal Soc. London. Ser. A 109 No 752 1925 642 65310.1098/rspa.1925.0150Search in Google Scholar

[6] Erdélyi A. Magnus W. Oberhettinger F. Tricomi F.G. (Eds.) Higher Transcendental Functions Volume 1 McGraw-Hill New York and Krieeger, Melbourne Florida 1981Search in Google Scholar

[7] Fichtenholz G.M. Differential and Integral Calculus Volume 2 7th Ed. Nauka Moscow 1969[In Russian], Chapters 11 and 12Search in Google Scholar

[8] Fichtenholz G.M. Infinite Series: Ramifications Gordon and Breach New York 1970Search in Google Scholar

[9] Fichtenholz G.M. Functional Series Gordon and Breach Science New York 1970Search in Google Scholar

[10] Grünwald A.K. About “limited” derivations their application J. Appl. Math. Phys. 12 1897 441 480[In German]Search in Google Scholar

[11] Hardy G.H. Divergent Series 2nd Ed. American Mathematical Society New York 2000Search in Google Scholar

[12] Huang Y.H. Oberman A. Numerical methods for the fractional Laplacian: a finite difference-quadrature approach SIAM J. Numer. Anal. 52 No 6 2014 3056 3084also, arXiv:1311.769110.1137/140954040Search in Google Scholar

[13] Kilbas A.A. Srivastava H.M. Trujillo J.J. Theory and Applications of Fractional Differential Equations Elsevier Amsterdam 2006Search in Google Scholar

[14] Kiryakova V. Generalized Fractional Calculus and Applications Longman, Harlow and Wiley New York 1994Search in Google Scholar

[15] Kuttner B. On differences of fractional order Proc. London Math. Soc. 3–7 No 1 1957 453 46610.1112/plms/s3-7.1.453Search in Google Scholar

[16] Letnikov A.V. Historical development of the theory of differentiation of fractional order Matematicheskii Sbornik 3 1868 85 119[in Russian]Search in Google Scholar

[17] Letnikov A.V. Theory of differentiation with arbitrary pointer Matematicheskii Sbornik 3 1868 1 68[in Russian]Search in Google Scholar

[18] Liu C.-S. Counterexamples on Jumarie's two basic fractional calculus formulae Comm. Nonlin. Sci. Num. Sim. 22 No 1–3 2015 92 9410.1016/j.cnsns.2014.07.022Search in Google Scholar

[19] Li C.P. Zeng F.H. Finite difference methods for fractional differential equations Int. J. Bifurc. Chaos 22 No 4 2012123001410.1142/S0218127412300145Search in Google Scholar

[20] Li C.P. Zeng F.H. The finite difference methods for fractional ordinary differential equations Numer. Funct. Anal. Optim. 34 No 2 2013 149 17910.1080/01630563.2012.706673Search in Google Scholar

[21] Mainardi F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models World Scientific Singapore 201010.1142/p614Search in Google Scholar

[22] Massopust P.R. Zayed A.I. On the invalidity of Fourier series expansions of fractional order Fract. Calc. Appl. Anal. 18 No 6 2015 1507 1517DOI: 10.1515/fca-2015-0087; also: arXiv:1507.07798; http://www.degruyter.com/view/j/fca.2015.18.issue-6/issue-files/fca.2015.18.issue-6.xml10.1515/fca-2015-0087Search in Google Scholar

[23] Mickens R.E. Difference equation models of differential equations Math. Comp. Modelling 11 1988 528 53010.1016/0895-7177(88)90549-3Search in Google Scholar

[24] Mickens R.E. Discretizations of nonlinear differential equations using explicit nonstandard methods J. Comp. Appl. Math. 110 No 1 1999 181 18510.1016/S0377-0427(99)00233-2Search in Google Scholar

[25] Mickens R.E. Nonstandard finite difference schemes for differential equations J. Diff. Eq. Appl. 8 No 9 2002 823 84710.1080/1023619021000000807Search in Google Scholar

[26] Mickens R.E. Nonstandard Finite Difference Models of Differential Equations World Scientific Singapore 199410.1142/2081Search in Google Scholar

[27] Mickens R.E. (Ed.) Applications of Nonstandard Finite Difference Schemes World Scientific Singapore 200010.1142/4272Search in Google Scholar

[28] Mickens R.E. (Ed.) Advances in the Applications of Nonstandard Finite Difference Schemes World Scientific Singapore 200510.1142/5884Search in Google Scholar

[29] Mickens R.E. Munyakazi J. Washington T.M. A note on the exact discretization for a Cauchy-Euler equation: application to the Black-Scholes equation J. Diff. Eq. Appl. 21 No 7 2015 547 55210.1080/10236198.2015.1034118Search in Google Scholar

[30] Ortigueira M.D. Riesz potential operators and inverses via fractional centred derivatives Int. J. Math. Math. Sci. 2006 20064839110.1155/IJMMS/2006/48391Search in Google Scholar

[31] Ortigueira M.D. Fractional central differences and derivatives J. Vibr. Control 14 No 9–10 2008 1255 126610.1177/1077546307087453Search in Google Scholar

[32] Ortigueira M.D. Fractional Calculus for Scientists and Engineers Springer Netherlands 201110.1007/978-94-007-0747-4Search in Google Scholar

[33] Ortigueira M.D. Coito F. From differences to derivatives Fract. Calc. Appl. Anal. 7 No 4 2004 459 471Search in Google Scholar

[34] Ortigueira M.D. Rivero M. Trujillo J.J. The incremental ratio based causal fractional calculus Int. J. Bif. Chaos 22 No 4 2012125007810.1142/S0218127412500782Search in Google Scholar

[35] Ortigueira M.D. J.A. Tenreiro Machado, What is a fractional derivative? J. Comp. Phys. 293 2015 4 1310.1016/j.jcp.2014.07.019Search in Google Scholar

[36] Ortigueira M.D. Trujillo J.J. A unified approach to fractional derivatives Comm. Nonlin. Sci. Num. Sim. 17 No 12 2012 5151 515710.1016/j.cnsns.2012.04.021Search in Google Scholar

[37] Prudnikov A.P. Brychkov Yu.A. Marichev O.I. Integrals and Series, Vol. 1: Elementary Functions Gordon and Breach New York 1986Search in Google Scholar

[38] Podlubny I. Fractional Differential Equations Academic Press San Diego 1998Search in Google Scholar

[39] Potts R.B. Differential and difference equations Amer. Math. Monthly 89 No 6 1982 402 40710.1080/00029890.1982.11995464Search in Google Scholar

[40] Potts R.B. Ordinary and partial difference equations J. Austr. Math. Soc. B 27 No 6 1986 488 50110.1017/S0334270000005099Search in Google Scholar

[41] Prado H. Rivero M. Trujillo J.J. Velasco M.P. New results from old investigation: A note on fractional m-dimensional differential operators. The fractional Laplacian Fract. Calc. Appl. Anal. 18 No 2 2015 290 306DOI: 10.1515/fca-2015-0020;issue-files/fca.2015.18.issue-2.xmlSearch in Google Scholar

[42] Riesz M. L’intégrale de Riemann-Liouville et le probléme de Cauchy Acta Mathematica 81 No 1 1949 1 222[in French]10.1007/BF02395016Search in Google Scholar

[43] Sabatier J. Agrawal O.P. Tenreiro Machado J.A. (Ed.) Advances in Fractional Calculus. Theoretical Developments and Applications in Physics and Engineering Springer Dordrecht 200710.1007/978-1-4020-6042-7Search in Google Scholar

[44] Samko S.G. Kilbas A.A. Marichev O.I. Fractional Integrals and Derivatives Theory and Applications Gordon and Breach New York 1993Search in Google Scholar

[45] Shen S. Liu F. Anh V. Turner I. The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation IMA J. Appl. Math. 73 No 6 2008 850 87210.1093/imamat/hxn033Search in Google Scholar

[46] Tarasov V.E. Map of discrete system into continuous J. Math. Phys. 47 No 9 2006092901; also, arXiv:0711.261210.1063/1.2337852Search in Google Scholar

[47] Tarasov V.E. Continuous limit of discrete systems with long-range interaction J. Phys. A 39 No 48 2006 14895 14910also, arXiv:0711.082610.1088/0305-4470/39/48/005Search in Google Scholar

[48] Tarasov V.E. Quantum Mechanics of Non-Hamiltonian and Dissipative Systems Elsevier Science, Amsterdam Boston 2008Search in Google Scholar

[49] Tarasov V.E. Review of some promising fractional physical models Int. J. Mod. Phys. B 27 No 9 2013133000510.1142/S0217979213300053Search in Google Scholar

[50] Tarasov V.E. No violation of the Leibniz rule. No fractional derivative Comm. Nonlin. Sci. Num. Sim. 18 No 11 2013 2945 294810.1016/j.cnsns.2013.04.001Search in Google Scholar

[51] Tarasov V.E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media Springer New York 201110.1007/978-3-642-14003-7_11Search in Google Scholar

[52] Tarasov V.E. Fractional dynamics of media with long-range interaction In: Fractional Dynamics Springer Berlin-Heidelberg 2010 153 21410.1007/978-3-642-14003-7_8Search in Google Scholar

[53] Tarasov V.E. Fractional quantum field theory: From lattice to continuum Adv. High Energy Phys. 2014 201495786310.1155/2014/957863Search in Google Scholar

[54] Tarasov V.E. Large lattice fractional Fokker-Planck equation J. Stat. Mech. 2014 No 9 2014P09036; also, arXiv:1503.0363610.1088/1742-5468/2014/09/P09036Search in Google Scholar

[55] Tarasov V.E. Fractional gradient elasticity from spatial dispersion law ISRN Cond. Matter Phys. 2014 201479409710.1155/2014/794097Search in Google Scholar

[56] Tarasov V.E. Lattice with long-range interaction of power-law type for fractional non-local elasticity Int. J. Sol. Struct. 51 No 15–16 2014 2900 2907also, arXiv:1502.0549210.1016/j.ijsolstr.2014.04.014Search in Google Scholar

[57] Tarasov V.E. Lattice model of fractional gradient and integral elasticity: Long-range interaction of Grunwald-Letnikov-Riesz type Mech. Mater. 70 No 1 2014 106 114also, arXiv:1502.0626810.1016/j.mechmat.2013.12.004Search in Google Scholar

[58] Tarasov V.E. Toward lattice fractional vector calculus J. Phys. A 47 No 35 201435520410.1088/1751-8113/47/35/355204Search in Google Scholar

[59] Tarasov V.E. Lattice fractional calculus Appl. Math. Comp. 257 2015 12 3310.1016/j.amc.2014.11.033Search in Google Scholar

[60] Tarasov V.E. Comments on “The Minkowski's space-time is consistent with differential geometry of fractional order” Phys. Lett. A 379 No 14–15 2015 1071 107210.1016/j.physleta.2015.02.005Search in Google Scholar

[61] Tarasov V.E. Three-dimensional lattice approach to fractional generalization of continuum gradient elasticity Progr. Fract. Diff. Appl. 1 No 4 2015 243 25810.18576/pfda/010402Search in Google Scholar

[62] Tarasov V.E. Fractional-order difference equations for physical lattices and some applications J. Math. Phys. 56 No 10 201510350610.1063/1.4933028Search in Google Scholar

[63] Tarasov V.E. Fractional Liouville equation on lattice phase-space Physica A: Stat. Mech. Appl. 421 2015 330 342also, arXiv:1503.0435110.1016/j.physa.2014.11.031Search in Google Scholar

[64] Tarasov V.E. Exact discrete analogs of derivatives of integer orders: Differences as infinite series J. Math. 2015 201513484210.1155/2015/134842Search in Google Scholar

[65] Tarasov V.E. Leibniz rule and fractional derivatives of power functions J. Comp. Nonl. Dyn. 11 No 3 201603101410.1115/1.4031364Search in Google Scholar

[66] Tarasov V.E. On chain rule for fractional derivatives Comm. Nonlin. Sci. Num. Sim. 30 No 1–3 2016 1 410.1016/j.cnsns.2015.06.007Search in Google Scholar

[67] Tarasov V.E. Exact discretization of Schrodinger equation Phys. Lett. A 380 No 1–2 2016 68 7510.1016/j.physleta.2015.10.039Search in Google Scholar

[68] Tarasov V.E. Exact discretization by Fourier transforms Comm. Nonlin. Sci. Num. Sim. 37 2016 31 6110.1016/j.cnsns.2016.01.006Search in Google Scholar

[69] Tenreiro Machado J. Kiryakova V. Mainardi F. Recent history of fractional calculus Comm. Nonlin. Sci. Num. Sim. 16 No 3 2011 1140 115310.1016/j.cnsns.2010.05.027Search in Google Scholar

[70] Tenreiro Machado J.A. Galhano A.M. Trujillo J.J. Science metrics on fractional calculus development since 1966 Fract. Calc. Appl. Anal. 16 No 2 2013 479 500DOI: 10.2478/s13540-013-0030-y;Search in Google Scholar

[71] Uchaikin V. Sibatov R. Fractional Kinetics in Solids: Anomalous Charge Transport in Semiconductors, Dielectrics and Nanosystems World Scientific Singapore 201310.1142/8185Search in Google Scholar

[72] Yang Q. Liu F. Turner I. Numerical methods for fractional partial differential equations with Riesz space fractional derivatives Appl. Math. Model. 34 No 1 2010 200 21810.1016/j.apm.2009.04.006Search in Google Scholar

[73] Zhou Y. Basic Theory of Fractional Differential Equations World Scientific Singapore 201410.1142/9069Search in Google Scholar

Received: 2015-7-25
Published Online: 2016-6-28
Published in Print: 2016-6-1

© 2016 Diogenes Co., Sofia

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/fca-2016-0034/html
Scroll to top button