Home Pseudo almost automorphy of semilinear fractional differential equations in Banach Spaces
Article
Licensed
Unlicensed Requires Authentication

Pseudo almost automorphy of semilinear fractional differential equations in Banach Spaces

  • Zhinan Xia EMAIL logo , Meng Fan and Ravi P. Agarwal
Published/Copyright: June 28, 2016

Abstract

In this paper, we investigate the existence and uniqueness of (μ,ν)-pseudo almost automorphic mild solutions to semilinear fractional differential equation with Riemann-Liouville derivative in Banach space, where the nonlinear perturbation is of (μ,ν)-pseudo almost automorphic type or Stepanov-like (μ,ν)-pseudo almost automorphic type. As application, we explore the same topic for a fractional relaxation-oscillation equation.

References

001 Abbas S. Pseudo almost automorphic solutions of fractional order neutral differential equation Semigroup Forum 81 No 3 2010 393 40410.1007/s00233-010-9227-0Search in Google Scholar

002 Agarwal R.P. de Andrade B. Cuevas C. On type of periodicity and ergodicity to a class of fractional order differential equations Adv. Differential Equ. 2010 2010Article ID 179750 2510.1186/1687-1847-2010-179750Search in Google Scholar

003 Agarwal R.P. O’Regan D. Staněk S. Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations J. Math. Anal. Appl. 371 No 1 2010 57 6810.1016/j.jmaa.2010.04.034Search in Google Scholar

004 Adolfsson K. Enelund J. Olsson P. On the fractional order model of viscoelasticity Mech. Time-Depend. Mat. 9 No 1 2005 15 3410.1007/s11043-005-3442-1Search in Google Scholar

005 Araya D. Lizama C. Almost automorphic mild solutions to fractional differential equations Nonlinear Anal. 69 No 11 2008 3692 370510.1016/j.na.2007.10.004Search in Google Scholar

006 Bazhlekova E. Fractional Evolution Equation in Banach Spaces. Ph Thesis D. Eindhoven University of Techology 2001Search in Google Scholar

007 Blot J. Cieutat P. Ezzinbi K. Measure theory and pseudo almost automorphic functions: New developments and applications Nonlinear Anal. 75 No 4 2012 2426 244710.1016/j.na.2011.10.041Search in Google Scholar

008 Blot J. Cieutat P. Ezzinbi K. New approach for weighted pseudo-almost periodic functions under the light of measure theory, basic results and applications Appl. Anal. 92 No 3 2013 493 52610.1080/00036811.2011.628941Search in Google Scholar

009 Blot J. Mophou G.M. N’Guérékata G.M. Pennequin D. Weighted pseudo almost automorphic functions and applications to abstract differential equations Nonlinear Anal. 71 No 3–4 2009 903 90910.1016/j.na.2008.10.113Search in Google Scholar

010 Bochner S. A new approach to almost periodicity Proc. Natl. Acad. Sci. USA 48 No 12 1962 2039 204310.1073/pnas.48.12.2039Search in Google Scholar PubMed PubMed Central

011 Chang Y.K. Luo X.X. Existence of μ-pseudo almost automorphic solutions to a neutral differential equation by interpolation theory Filomat 28 No 3 2014 603 61410.2298/FIL1403603CSearch in Google Scholar

012 Chang Y.K. Luo X.X. N’Guérékata G.M. Asymptotically typed solutions to a semilinear integral equation J. Integral Equations Appl. 26 No 3 2014 323 34310.1216/JIE-2014-26-3-323Search in Google Scholar

013 Chang Y.K. Luo X.X. Pseudo almost automorphic behavior of solutions to a semi-linear fractional differential equation Math. Commun. 20 No 1 2015 53 68Search in Google Scholar

014 Chen W. Zhang X. D. Korošak D. Investigation on fractional and fractal derivative relaxation-oscillation models Int. J. Nonlinear Sci. Numer. Simul. 11 No 1 2010 3 910.1515/IJNSNS.2010.11.1.3Search in Google Scholar

015 Cuesta E. Asymptotic behaviour of the solutions fractional integro-differential equations and some time discretizations Discrete Contin. Dyn. Syst. Suppl. 2007 277 285Search in Google Scholar

016 Cuevas C. Lizama C. Almost automorphic solutions to a class of semilinear fractional differential equations Appl. Math. Lett. 21 No 12 2008 1315 131910.1016/j.aml.2008.02.001Search in Google Scholar

017 Diagana T. Weighted pseudo almost periodic solutions to some differential equations Nonlinear Anal. 68 No 8 2008 2250 226010.1016/j.na.2007.01.054Search in Google Scholar

018 Diagana T. Existence of pseudo-almost automorphic solutions to some abstract differential equations with -pseudo-almost automorphic coefficients Nonlinear Anal. 70 No 11 2009 3781 379010.1016/j.na.2008.07.034Search in Google Scholar

019 Diagana T. Ezzinbi K. Miraoui M. Pseudo-almost periodic and pseudo-almost automorphic solutions to some evolution equations involving theoretical measure theory Cubo 16 No 2 2014 1 3110.4067/S0719-06462014000200001Search in Google Scholar

020 Diop M.A. Ezzinbi K. Mbaye M.M. Measure theory and -pseudo almost periodic and automorphic process: application to stochastic evolution equations Afrika Mat. 2014 2014 DOI: 10.1007/s13370-014-0247-xSearch in Google Scholar

021 Ding H. Liang J. Xiao T. Almost automorphic solutions to abstract fractional differential equations Adv. Difference Equ. 2010 2010Article ID 508374, 9 pages10.1186/1687-1847-2010-508374Search in Google Scholar

022 Enelund M. Olsson P. Damping described by fading memory-analysis and application to fractional derivative models Int. J. Solids Struct. 36 No 7 1999 939 97010.1016/S0020-7683(97)00339-9Search in Google Scholar

023 Fréchet M. Les fonctions asymptotiquement presque-périodiques Revue Sci. (Rev. Rose. Illus.) 79 1941 341 354Search in Google Scholar

024 Li K. Peng J. Gao J. Existence results for semilinear fractional differential equations via Kuratowski measure of noncompactness Fract. Calc. Appl. Anal. 15 No 4 2012 591 610 DOI: 10.2478/s13540-012-0041-0;Search in Google Scholar

025 Lunardi A. Analytic Semigroups and Optimal Regularity in Parabolic Problems Birkhäuser Basel 199510.1007/978-3-0348-0557-5Search in Google Scholar

026 Mophou G.M. N’Guérékata G.M. On some classes of almost automorphic functions and applications to fractional differential equations Comput. Math. Appl. 59 No 3 2010 1310 131710.1016/j.camwa.2009.05.008Search in Google Scholar

027 N’Guérékata G.M. Sur les solutions presque automorphes d’équations différentielles abstraites Ann. Sci. Math. Québec. 5 No 1 1981 69 79Search in Google Scholar

028 N’Guérékata G.M. Topics in Almost Automorphy Springer-Verlag New York 2005Search in Google Scholar

029 N’Guérékata G.M. Pankov A. Stepanov-like almost automorphic functions and monotone evolution equations Nonlinear Anal. 68 No 9 2008 2658 266710.1016/j.na.2007.02.012Search in Google Scholar

030 Pankov A. Bounded and Almost Periodic Solutions of Nonlinear Operator Differential Equations Kluwer Dordrecht 199010.1007/978-94-011-9682-6Search in Google Scholar

031 Podlubny I. Fractional Differential Equations Academic Press New York 1999Search in Google Scholar

032 Shen W. Yi Y. Almost Automorphic and Almost Periodic Dynamics in Skew-Product Semiflows Mem. Amer. Math. Soc. 136 No 647 199810.1090/memo/0647Search in Google Scholar

033 Wang D.J. Xia Z.N. Pseudo almost automorphic solution of semilinear fractional differential equations with the Caputo derivatives Frac. Calc. Appl. Anal. 18 No 4 2015 951 971 DOI: 10.1515/fca-2015-0056;Search in Google Scholar

034 Xia Z.N. Fan M. Weighted Stepanov-like pseudo almost automorphy and applications Nonlinear Anal. 75 No 4 2012 2378 239710.1016/j.na.2011.10.036Search in Google Scholar

035 Zhang C. Pseudo Almost Periodic Functions and Their Applications Thesis, the University of Western Ontario 1992Search in Google Scholar

Received: 2015-1-31
Revised: 2015-11-20
Published Online: 2016-6-28
Published in Print: 2016-6-1

© 2016 Diogenes Co., Sofia

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/fca-2016-0039/html
Scroll to top button