Startseite Fractional Approach for Estimating Sap Velocity in Trees
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Fractional Approach for Estimating Sap Velocity in Trees

  • Inés Tejado EMAIL logo , Blas M. Vinagre , Daniel Torres , Álvaro López-Bernal , Francisco J. Villalobos , Luca Testi und Igor Podlubny
Veröffentlicht/Copyright: 13. März 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In the context of fractional calculus (FC), this paper is devoted to model thermal processes in trees based on the measurement of the temperature difference (ΔT) between sensors located above and below a heater inserted in the tree trunk. By evaluating several temperature curves taken from real trees of different species, the current approach shows that the temperature in each probe can be successfully described by the two-parameter Mittag- Leffler function Eα,β. Then, a simple methodology is followed to derive a novel expression of the heat-pulse velocity (v) as a function of ΔT and the parameter α of the mentioned Eα,β function. Experimental results are given to validate the goodness of the current proposal.

References

[1] Y. Aoki, M. Sen, and S. Paolucci, Approximation of transient temperatures in complex geometries using fractional derivatives. Heat Mass Transfer 44, No 7 (2008), 771-777.Suche in Google Scholar

[2] J.L. Battaglia, O. Cois, L. Puigsegur, and A. Oustaloup, Solving an inverse heat conduction problem using a non-integer identified model. Int. J. Heat Mass Transfer 44, No 14 (2001), 2671-2680.Suche in Google Scholar

[3] P. Becker, Limitations of a compensation heat pulse velocity system at low sap flow: Implications for measurements at night and in shaded trees. Tree Physiol. 18, No 3 (1998), 177-184.Suche in Google Scholar

[4] S.O. Burgess, M.A. Adams, N.C. Turner, C.R. Beverly, C.K. Ong, A.H. Khan, and T.M. Bleby, An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiol. 21, No 9 (2001), 589-598.Suche in Google Scholar

[5] J.E. Fernández, P.J. Durán, M.J. Palomo, A. Díaz-Espejo, V. Chamorro and I.F. Girón, Calibration of sap flow estimated by the compensation heat pulse method in olive, plum and orange trees: relationships with xylem anatomy. Tree Physiol. 26, No 6 (2006), 719-728.Suche in Google Scholar

[6] J.D. Gabano and T. Poinot, Fractional modelling applied to heat conductivity and diffusivity estimation. Phys. Scr. 136 (2009), 014015.10.1088/0031-8949/2009/T136/014015Suche in Google Scholar

[7] J.D. Gabano and T. Poinot, Estimation of thermal parameters using fractional modelling. Signal Process. 91, No 4 (2011), 938-948.Suche in Google Scholar

[8] S. Green, B. Clothier, and B. Jardine, Theory and practical application of heat pulse to measure sap flow. Agron. J. 95 (2003), 1371-1379.Suche in Google Scholar

[9] V.V. Kulish and J.L. Lage, Fractional-diffusion solutions for transient local temperature and heat flux. J. Heat Transfer 122, No 2 (2000), 372-376.Suche in Google Scholar

[10] C. Poblete-Echeverría, S. Ortega-Farias, M. Zuñiga and S. Fuentes, Evaluation of compensated heat-pulse velocity method to determine vine transpiration using combined measurements of eddy covariance system and microlysimeters. Agric. Water Manage. 109, (2012), 11-19.10.1016/j.agwat.2012.01.019Suche in Google Scholar

[11] Igor Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic Press, Boston etc. (1999).Suche in Google Scholar

[12] Igor Podlubny, Fitting data using the Mittag-Leffler function (2011). Online at: http://www.mathworks.com/matlabcentral/fileexchange/32170-fitting-data-using-the-mittag-leffler-function.Suche in Google Scholar

[13] M.Z. Protic, M.B. Stankovic, D.M. Mitic and B.T. Todorovic, Application of fractional calculus in ground heat flux estimation. Therm. Sci. 16, No 2 (2012), 373-384.Suche in Google Scholar

[14] D. Sierociuk, A. Dzielinski, G. Sarwas, I. Petras, I. Podlubny, and T. Skovranek, Modeling heat transfer in heterogeneous media using fractional calculus. Philos. Trans. Roy. Soc. A: Math. Phys. Eng. Sci. 371, No 1990 (2013), 20120146.10.1098/rsta.2012.0146Suche in Google Scholar PubMed

[15] R.H. Swanson and W.A. Whitfield, A numerical analysis of heat pulse velocity theory and practice. J. Exp. Bot. 32, No 1 (1981), 221-239.Suche in Google Scholar

[16] I. Tejado, S.H. HosseinNia, D. Torres, B.M. Vinagre, A. López-Bernal, F.J. Villalobos, L. Testi, and I. Podlubny, Fractional models for measuring sap velocities in trees. In: Proc. 2014 Int. Conf. Fractional Differentiation and Its Applications (ICFDA’14) (2014).10.1109/ICFDA.2014.6967396Suche in Google Scholar

[17] L. Testi and F.J. Villalobos, New approach for measuring low sap velocities in trees. Agric. For. Meteorol. 149 (2009), 730-734.Suche in Google Scholar

[18] L. Vázquez, J.J. Trujillo and M.P. Velasco, Fractional heat equation and the second law of thermodynamics. Fract. Calc. Appl. Anal. 14, No 3 (2011), 334-342; DOI: 10.2478/s13540-011-0021-9; http://link.springer.com/article/10.2478/s13540-011-0021-9. Suche in Google Scholar

Received: 2014-9-26
Published Online: 2015-3-13
Published in Print: 2015-4-1

© 2015 Diogenes Co., Sofia

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2015-0030/pdf?lang=de
Button zum nach oben scrollen