Startseite Formal Consistency Versus Actual Convergence Rates of Difference Schemes for Fractional-Derivative Boundary Value Problems
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Formal Consistency Versus Actual Convergence Rates of Difference Schemes for Fractional-Derivative Boundary Value Problems

  • José Luis Gracia EMAIL logo und Martin Stynes
Veröffentlicht/Copyright: 13. März 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Finite difference methods for approximating fractional derivatives are often analyzed by determining their order of consistency when applied to smooth functions, but the relationship between this measure and their actual numerical performance is unclear. Thus in this paper several wellknown difference schemes are tested numerically on simple Riemann-Liouville and Caputo boundary value problems posed on the interval [0, 1] to determine their orders of convergence (in the discrete maximum norm) in two unexceptional cases: (i) when the solution of the boundary-value problem is a polynomial (ii) when the data of the boundary value problem is smooth. In many cases these tests reveal gaps between a method’s theoretical order of consistency and its actual order of convergence. In particular, numerical results show that the popular shifted Gr¨unwald-Letnikov scheme fails to converge for a Riemann-Liouville example with a polynomial solution p(x), and a rigorous proof is given that this scheme (and some other schemes) cannot yield a convergent solution when p(0)≠ 0.

References

[1] K. Diethelm, The Analysis of Fractional Differential Equations. Springer-Verlag, Berlin (2010).10.1007/978-3-642-14574-2Suche in Google Scholar

[2] D. Elliott, An asymptotic analysis of two algorithms for certain Hadamard finite-part integrals. IMA J. Numer. Anal. 13, No 3 (1993), 445-462.Suche in Google Scholar

[3] J.L. Gracia, M. Stynes, Upwind and central difference approximation of convection in Caputo fractional derivative two-point boundary value problems. J. Comput. Appl. Math. 273 (2015), 103-115.Suche in Google Scholar

[4] N. Kopteva, M. Stynes, An efficient collocation method for a Caputo two-point boundary value problem. To appear in: BIT Numer. Math.; DOI:10.1007/s10543-014-0539-4.10.1007/s10543-014-0539-4Suche in Google Scholar

[5] C. Li, F. Zeng, Finite difference methods for fractional differential equations. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 22, No 4 (2012) 130014 (28 pages).Suche in Google Scholar

[6] J.T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16 No 3 (2011), 1140-1153.10.1016/j.cnsns.2010.05.027Suche in Google Scholar

[7] M.M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, No 1 (2004), 65-77.Suche in Google Scholar

[8] K.B. Oldham, J. Spanier, The Fractional Calculus. Academic Press, New York - London (1974).Suche in Google Scholar

[9] F.W.J. Olver, D.W. Lozier, R. Boisvert, C.W. Clark, NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010).Suche in Google Scholar

[10] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).Suche in Google Scholar

[11] S. Shen, F. Liu, Error analysis of an explicit finite difference approximation for the space fractional diffusion equation with insulated ends. ANZIAM J. 46, No C (2004/05), C871-C887.10.21914/anziamj.v46i0.995Suche in Google Scholar

[12] E. Sousa, Numerical approximations for fractional diffusion equations via splines. Comput. Math. Appl. 62, No 3 (2011), 938-944.Suche in Google Scholar

[13] E. Sousa, How to approximate the fractional derivative of order 1 < α ≤ 2. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 22, No 4 (2012), 1250075.10.1142/S0218127412500757Suche in Google Scholar

[14] E. Sousa, C. Li, A weighted finite difference method for the fractional diffusion equation based on the Riemann-Liouville derivative. Appl. Numer. Math. 90 (2015), 22-37.Suche in Google Scholar

[15] M. Stynes, J.L. Gracia, A finite difference method for a two-point boundary value problem with a Caputo fractional derivative. To appear in: IMA J. Numer. Anal.; DOI:10.1093/imanum/dru011.10.1093/imanum/dru011Suche in Google Scholar

[16] W. Tian, H. Zhou, W. Deng, A class of second-order difference approximations for solving space fractional diffusion equations. To appear in: Math. Comp.; DOI:10.1090/S0025-5718-2015-02917-2.10.1090/S0025-5718-2015-02917-2Suche in Google Scholar

[17] H. Zhou, W. Tian, W. Deng, Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 56, No 1 (2013), 45-66. Suche in Google Scholar

Received: 2014-9-9
Published Online: 2015-3-13
Published in Print: 2015-4-1

© 2015 Diogenes Co., Sofia

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2015-0027/html?lang=de
Button zum nach oben scrollen