Startseite Enhancing Multivariate Control Charts for Individual Observations Using ROC Estimates
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Enhancing Multivariate Control Charts for Individual Observations Using ROC Estimates

  • S. Vijayalakshmi , Nicy Sebastian und T. A. Sajesh ORCID logo EMAIL logo
Veröffentlicht/Copyright: 4. Oktober 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Classical Hotelling’s T 2 control chart is frequently used for monitoring a multivariate process. The existence of outlying observations in the Phase I data used to determine the control limit can have a significant impact on the accuracy of such control charts, as is well known. Based on the robust reweighted orthogonalized comedian estimates, a robust multivariate quality control chart for individual observations is proposed in this study. Control limit of the proposed robust control chart is estimated by modelling the simulated quantiles for any sample size. A Simulation study has been conducted to examine the performance of the proposed method and compare it with the performances of the classical Hotelling T 2 control chart, a robust control chart based on shrinkage reweighted estimator and two robust control charts based on the reweighted minimum covariance determinant estimator. The results demonstrate the effectiveness of the proposed method, even under high-dimensional settings or when the contamination in the Phase I data is high, with both independent and correlated variables. Performance of the proposed method is also illustrated by implementing in a real-world example

MSC 2020: 62H99

References

[1] J. L. Alfaro and J. F. Ortega, A robust alternative to Hotelling’s T 2 control chart using trimmed estimators, Qual. Reliab. Eng. Int. 24 (2008), no. 5, 601–611. 10.1002/qre.929Suche in Google Scholar

[2] J. L. Alfaro and J. F. Ortega, A comparison of robust alternatives to Hotelling’s T 2 control chart, J. Appl. Stat. 36 (2009), no. 12, 1385–1396. 10.1080/02664760902810813Suche in Google Scholar

[3] F. B. Alt, Multivariate quality control, The Encyclopedia of Statistical Sciences. Vol. 6, John Wiley & Sons, New York (1985), 110–122. Suche in Google Scholar

[4] E. Cabana and R. E. Lillo, Robust multivariate control chart based on shrinkage for individual observations, J. Qual. Technol. 54 (2022), no. 4, 415–440. 10.1080/00224065.2021.1930617Suche in Google Scholar

[5] E. Cabana, R. E. Lillo and H. Laniado, Multivariate outlier detection based on a robust Mahalanobis distance with shrinkage estimators, Statist. Papers 62 (2021), no. 4, 1583–1609. 10.1007/s00362-019-01148-1Suche in Google Scholar

[6] S. Chenouri, A. M. Variyath and S. H. Steiner, A multivariate robust control chart for individual observations, J. Qual. Technol. 41 (2009), no. 3, 259–271. 10.1080/00224065.2009.11917781Suche in Google Scholar

[7] D. Gervini, A robust and efficient adaptive reweighted estimator of multivariate location and scatter, J. Multivariate Anal. 84 (2003), no. 1, 116–144. 10.1016/S0047-259X(02)00018-0Suche in Google Scholar

[8] W. A. Jensen, J. B. Birch and W. H. Woodall, High breakdown estimation methods for phase I multivariate control charts, Qual. Reliab. Eng. Int. 23 (2007), no. 5, 615–629. 10.1002/qre.837Suche in Google Scholar

[9] H. P. Lopuhaä and P. J. Rousseeuw, Breakdown points of affine equivariant estimators of multivariate location and covariance matrices, Ann. Statist. 19 (1991), no. 1, 229–248. 10.1214/aos/1176347978Suche in Google Scholar

[10] D. G. Montgomery, Introduction to Statistical Quality Control, John Wiley & Sons, New York, 2009. Suche in Google Scholar

[11] C. P. Quesenberry, The multivariate short-run snapshot Q chart, Qual. Eng. 13 (2001), no. 4, 679–683. 10.1080/08982110108918699Suche in Google Scholar

[12] P. J. Rousseeuw and B. C. Van Zomeren, Unmasking multivariate outliers and leverage points, J. Amer. Statist. Assoc. 85 (1990), no. 411, 633–639. 10.1080/01621459.1990.10474920Suche in Google Scholar

[13] T. A. Sajesh and M. R. Srinivasan, Outlier detection for high dimensional data using the comedian approach, J. Stat. Comput. Simul. 82 (2012), no. 5, 745–757. 10.1080/00949655.2011.552504Suche in Google Scholar

[14] J. A. Vargas, Robust estimation in multivariate control charts for individual observations, J. Qual. Technol. 35 (2003), 367–376. 10.1080/00224065.2003.11980234Suche in Google Scholar

[15] S. S. Wilks, Mathematical Statistics, John Wiley & Sons, New York, 1962. Suche in Google Scholar

[16] G. Willems, G. Pison, P. J. Rousseeuw and S. Van Aelst, A robust Hotelling test, Metrika 55 (2002), 125–138. 10.1007/s001840200192Suche in Google Scholar

Received: 2023-07-03
Revised: 2023-09-11
Accepted: 2023-09-17
Published Online: 2023-10-04
Published in Print: 2023-12-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/eqc-2023-0023/html?lang=de
Button zum nach oben scrollen