Abstract
In this paper, a c-control chart using a triple sampling scheme (TS-c) is studied. The chart design, procedure, and a bi-objective optimization model are given to optimize the TS-c-chart. The Average Run Length for in-control and out-of-control (
Funding statement: This work was fully supported by the Universidad del Magdalena, Santa Marta, Colombia.
References
[1] I. Ahmed, I. Sultana, S. K. Paul and A. Azeem, Performance evaluation of control chart for multiple assignable causes using genetic algorithm, Int. J. Adv. Manuf. Technol. 70 (2013), 1889–1902. 10.1007/s00170-013-5412-0Suche in Google Scholar
[2] A. Amiri and A. Namin, Evaluating multi-objective economic-statistical design of attribute c-control charts for monitoring the number of non-conformities, Int. J. Qual. Eng. Technol. 5 (2015), 10.1504/IJQET.2015.071653. 10.1504/IJQET.2015.071653Suche in Google Scholar
[3] G. Atalik and S. Senturk, Intuitionistic fuzzy c-control charts based on intuitionistic fuzzy ranking method for TIFNs, Soft. Comp. 26 (2022), 11403–11407. 10.1007/s00500-022-07438-5Suche in Google Scholar
[4] M. Bashiri, A. Amiri, M. H. Doroudyan and A. Asgari, Multi-objective genetic algorithm for economic statistical design of (X)overbar control chart, Sci. Iran. 20 (2013), 909–918. Suche in Google Scholar
[5] C. M. Borror, C. W. Champ and S. E. Rigdon, Poisson EWMA control charts, J. Qual. Technol. 30 (1998), no. 4, 352–361. 10.1080/00224065.1998.11979871Suche in Google Scholar
[6] M. J. Campuzano, A. Carrion and J. Mosquera, Characterization and optimal design of a new double sampling c chart, Eur. J. Ind. Eng. 13 (2019), no. 6, 775–793. 10.1504/EJIE.2019.104312Suche in Google Scholar
[7] P. Charongrattanasakul and W. Bamrungsetthapong, mixed control chart design using the integration of genetic algorithm and Monte Carlo simulation, Thai J. Math. 18 (2020), 651–667. Suche in Google Scholar
[8] P. Charongrattanasakul and A. Pongpullponsak, Minimizing the cost of integrated systems approach to process control and maintenance model by EWMA control chart using genetic algorithm, Expert Syst. Appl. 38 (2011), 5178–5186. 10.1016/j.eswa.2010.10.044Suche in Google Scholar
[9] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comp. 6 (2002), 182–197. 10.1109/4235.996017Suche in Google Scholar
[10] E. K. Epprecht and A. F. B. Costa, Adaptive sample size control charts for attributes, Qual. Eng. 13 (2001), no. 3, 465–473. 10.1080/08982110108918675Suche in Google Scholar
[11] E. K. Epprecht, A. F. B. Costa and F. C. T. Mendes, Adaptive control charts for attributes, IIE Trans. 35 (2003), no. 6, 567–582. 10.1080/07408170304427Suche in Google Scholar
[12] E. K. Epprecht, B. F. Simoes and F. C. Mendes, A variable sampling interval EWMA chart for attributes, Int. J. Adv. Manuf. Technol. 49 (2010), no. 1, 281–292. 10.1007/s00170-009-2390-3Suche in Google Scholar
[13] A. Faraz and E. Saniga, Multiobjective genetic algorithm approach to the economic statistical design of control charts with an application to X-bar and S-2 charts, Qual. Reliab. Eng. Int. 29 (2013), 407–415. 10.1002/qre.1390Suche in Google Scholar
[14] B. C. Franco, A. F. B. Costa and M. A. G. Machado, Economic-statistical design of the X-bar chart used to control a wandering process mean using genetic algorithm, Expert Syst. Appl. 39 (2012), no. 17, 12961–12967. 10.1016/j.eswa.2012.05.034Suche in Google Scholar
[15] L. J. Gu and Q. G. Tang, Economic design of the special VSSI T-2 chart with genetic algorithms based on Markov chain, Proceedings of the 3rd Annual International Conference on Management, Economics and Social Development (ICMESD), Atlantis Press, Amsterdam (2017), 94–99. Suche in Google Scholar
[16] D. He, A. Grigoryan and M. Sigh, Design of double- and triple-sampling X-bar control charts using genetic algorithms, Int. J. Prod. Res. 40 (2002), no. 6, 1387–1404. 10.1080/00207540110118415Suche in Google Scholar
[17] R. Inghilleri, T. Lupo and G. Passannanti, An effective double sampling scheme for the c control char, Qual. Reliab. Eng. Int. 31 (2013), no. 2, 205–216. 10.1002/qre.1572Suche in Google Scholar
[18] A. Iziy, B. Sadeghpour and E. Monabbati, Comparison between the economic-statistical design of double and triple sampling control charts, Stoch. Qual. Control. 32 (2017), 9–61. 10.1515/eqc-2017-0005Suche in Google Scholar
[19] S. Joekes and E. Barbosa, An improved attribute control chart for monitoring non-conforming proportion in high quality processes, Control Eng. Prac. 21 (2013), no. 4, 407–412. 10.1016/j.conengprac.2012.12.005Suche in Google Scholar
[20] S. N. Lin, C. Y. Chou, S. L. Wang and H. R. Liu, Economic design of autoregressive moving average control chart using genetic algorithms, Expert Syst. Appl. 39 (2012), 1793–1798. 10.1016/j.eswa.2011.08.073Suche in Google Scholar
[21] M. R. Maleki, A. Salmasnia and S. S. Yarmohammadi, The performance of triple sampling control chart with measurement errors, Qual. Technol. Quant. Manag. 19 (2022), 587–604. 10.1080/16843703.2022.2040702Suche in Google Scholar
[22] F. N. Mim, M. B. C. Khoo, S. Saha and P. Castagliola, Revised triple sampling control charts for the mean with known and estimated process parameters, Int. J. Prod. Res. 60 (2022), 4911–4935. 10.1080/00207543.2021.1943035Suche in Google Scholar
[23] D. C. Montgomery, Introduction to Statistical Quality Control, 7th ed., Hoboken, New York, 2012. Suche in Google Scholar
[24] J. J. Munoz, M. J. Campuzano and J. Mosquera, Optimized np attribute control chart using triple sampling, Mathematics 10 (2022), 10.3390/math10203791. 10.3390/math10203791Suche in Google Scholar
[25] S. T. A. Niaki and M. J. Ershadi, A parameter-tuned genetic algorithm for statistically constrained economic design of multivariate CUSUM control charts: A Taguchi loss approach, Int. J. Syst. Sci. 43 (2012), 2275–2287. 10.1080/00207721.2011.570878Suche in Google Scholar
[26] S. T. A. Niaki, M. J. Ershadi and M. Malaki, Economic and economic-statistical designs of MEWMA control charts—A hybrid Taguchi loss, Markov chain, and genetic algorithm approach, Int. J. Adv. Manuf. Technol. 48 (2009), 283–296. 10.1007/s00170-009-2288-0Suche in Google Scholar
[27] S. T. A. Niaki, F. M. Gazaneh and J. Karimifar, Economic design of x-bar control chart with variable sample size and sampling interval under non-normality assumption: A genetic algorithm, Econ. Comput. Econ. Cybern. Stud. Res. 46 (2012), 159–182. Suche in Google Scholar
[28] S. T. A. Niaki, F. M. Gazaneh and M. A. Toosheghanian, Parameter-tuned genetic algorithm for economic-statistical design of variable sampling interval x-bar control charts for non-normal correlated samples, Comm. Statist. Simulation Comput. 43 (2013), 1212–1240. 10.1080/03610918.2012.732176Suche in Google Scholar
[29] P. C. Oprime, N. J. da Costa, C. I. Mozambani and C. L. Gonçalves, X-bar control chart design with asymmetric control limits and triple sampling, Int. J. Adv. Manuf. Technol. 104 (2018), 3313–3326. 10.1007/s00170-018-2640-3Suche in Google Scholar
[30] E. Perez, A. Carrion, J. Jabaloyes and F. Aparisi, Optimization of the new DS-u control chart: An application of genetic algorithms, Proceedings of the 9th WSEAS International Conference on Applications of Electrical Engineering (AEE ’10), ACM, New York (2010), 105–109. Suche in Google Scholar
[31] T. P. Ryan and N. C. Schwertman, Optimal limits for attributes control charts, J. Qual. Technol. 29 (1997), 86–98. 10.1080/00224065.1997.11979728Suche in Google Scholar
[32] A. Saghaei, S. M. T. Fatemi and S. Jaberi, Economic design of exponentially weighted moving average control chart based on measurement error using genetic algorithm, Qual. Reliab. Eng. Int. 30 (2013), 1153–1163. 10.1002/qre.1538Suche in Google Scholar
[33] A. Seif, Multi-objective genetic algorithm for economic statistical design of the t-2 control chart with variable sample size: The updated Markov chain approach, J. Test. Eval. 46 (2018), 1209–1219. 10.1520/JTE20160647Suche in Google Scholar
[34] A. Seif and M. Sadeghifar, Non-dominated sorting genetic algorithm (NSGA-II) approach to the multi-objective economic statistical design of variable sampling interval T-2 control charts, Hacet. J. Math. Stat. 44 (2015), 203–214. 10.15672/HJMS.201497460Suche in Google Scholar
[35] S. Sevil, Construction of fuzzy c control charts based on fuzzy rule method, Anadolu Univ. J. Sci. Technol. A 10 (2017), no. 3, 563–572. Suche in Google Scholar
[36] W. A. Shewhart, Quality control charts, Bell Sys. Tech. J. 5 (1926), no. 4, 593–603. 10.1002/j.1538-7305.1926.tb00125.xSuche in Google Scholar
[37] R. Suich, The c control chart under inspection error, J. Qual. Technol. 20 (1988), no. 4, 263–266. 10.1080/00224065.1988.11979119Suche in Google Scholar
[38] M. Tavana, Z. Li, M. Mobin, M. Komaki and E. Teymourian, Multi-objective control chart design optimization using NSGA-III and MOPSO enhanced with DEA and TOPSIS, Expert Syst. Appl. 50 (2016), 17–39. 10.1016/j.eswa.2015.11.007Suche in Google Scholar
[39] H. Trautmann, D. Steuer and O. Mersmann, Package “mco‘”: Multiple criteria optimization algorithms and related functions, 2020, https://cran.r-project.org/web/packages/mco/mco.pdf. Suche in Google Scholar
[40] A. A. Umar, M. B. C. Khoo, S. Saha and A. Haq, Effect of measurement errors on triple sampling X-bar chart, Qual. Reliab. Eng. Int. 38 (2022), 1886–1908. 10.1002/qre.3061Suche in Google Scholar
[41] S. Yanık, C. Kahraman and H. Yılmaz, Intelligent process control using control charts—II, control charts for attributes, Intelligent Decision Making in Quality Management, Springer, Cham (2015), 71–100. 10.1007/978-3-319-24499-0_3Suche in Google Scholar
[42] M. Zandieh, A. H. Hosseinian and R. Derakhshani, A hybrid NSGA-II-DEA method for the economic-statistical design of the C-control charts with multiple assignable causes, Int. J. Qual. Eng. Technol. 7 (2019), no. 3, 222–255. 10.1504/IJQET.2019.104871Suche in Google Scholar
[43] M. J. Zhao and A. R. Driscoll, The c-chart with bootstrap adjusted control limits to improve conditional performance, Qual. Reliab. Eng. Int. 32 (2016), no. 8, 2871–2881. 10.1002/qre.1971Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- A Higher-Order Markov Model for a Hybrid Inventory System with Probabilistic Remanufacturing Demand
- Quality Control Using Convolutional Neural Networks Applied to Samples of Very Small Size
- Design and Optimization of c-Control Chart Using a Triple Sampling Scheme
- Measuring One-Sided Process Capability Index for Autocorrelated Data in the Presence of Random Measurement Errors
- Enhancing Multivariate Control Charts for Individual Observations Using ROC Estimates
- Time to Absorption in Markov Chains as a Mixture Distribution of Hypo-Exponential Distributions
Artikel in diesem Heft
- Frontmatter
- A Higher-Order Markov Model for a Hybrid Inventory System with Probabilistic Remanufacturing Demand
- Quality Control Using Convolutional Neural Networks Applied to Samples of Very Small Size
- Design and Optimization of c-Control Chart Using a Triple Sampling Scheme
- Measuring One-Sided Process Capability Index for Autocorrelated Data in the Presence of Random Measurement Errors
- Enhancing Multivariate Control Charts for Individual Observations Using ROC Estimates
- Time to Absorption in Markov Chains as a Mixture Distribution of Hypo-Exponential Distributions