Startseite A New Method of Estimating the Process Capability Index with Exponential Distribution Using Interval Estimate of the Parameter
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A New Method of Estimating the Process Capability Index with Exponential Distribution Using Interval Estimate of the Parameter

  • Sai Sarada Vedururu EMAIL logo , M. Subbarayudu und K. V. S. Sarma
Veröffentlicht/Copyright: 15. Oktober 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper deals with a new method of deriving the Process Capability Index (PCI) when the quality characteristic X follows a positively skewed distribution. The focus of the paper is to derive a new estimate of PCI by taking into account the 100(1-α)  Confidence Intervals (CI) of the parameter (s) and arriving at a new expression. The formula Cs, proposed by Wright (1995) which contains a component for skewness, is reexamined and a new estimate is constructed by utilizing the lower, middle and upper values of the CI of the parameter. The weighted average of the three possible estimates of Cs is proposed as the new estimate by taking the weights inversely proportional to the squared deviation from the hypothetical value of Cs. The properties of the estimate are studied by simulation using one parameter exponential distribution.

MSC 2010: 62P30

References

[1] C. G. Borroni, M. Cazzaro and P. M. Chiodini, Measuring process capability under non-classical assumptions: A purposive review of the relevant literature, Statist. Appl. 22 (2010), no. 3, 279–306. Suche in Google Scholar

[2] J. A. Clements, Process capability calculations for non-normal distributions, Quality Progr. 22 (1989), 95–100. Suche in Google Scholar

[3] A. J. Duncan, Quality Control and Industrial Statistics, 3rd edition, D B Taraporevala Sons & Co Pvt Ltd., Bombay, 1999. Suche in Google Scholar

[4] G. S. Koch, Jr. and R. F. Link, Statistical Analysis of Geological Data, Dover Publications, New York, 2002. Suche in Google Scholar

[5] D. C. Montgomery, Introduction to Statistical Quality Control, 6th edition, John Wiley & Sons, New York, 2009. Suche in Google Scholar

[6] W. L. Pearn and C. S. Chang, The performance of process capability index Cs on skewed distributions, Comm. Statist. Simulation Comput. 26 (1997), 1361–1377. 10.1080/03610919708813444Suche in Google Scholar

[7] W. L. Pearn and K. S. Chen, Capability indices for non-normal distributions with an application electrolytic capacitor manufacturing, Microelect. Reliab. 37 (1997), 1853–1858. 10.1016/S0026-2714(97)00023-1Suche in Google Scholar

[8] K. Reddi Rani, V. Sai Sarada and K. V. S. Sarma, A new method of implementing single sampling plan by variables using interval estimates of process mean and variance, Int. J. Sci. Eng. Res. 8 (2017), no. 7, 1702–1705. Suche in Google Scholar

[9] V. Sai Sarada, M. Subbarayudu and K. V. S. Sarma, Estimation of process capability index using confidence intervals of process parameters, Res. Rev. J. Stat. 7 (2018), no. 3, 49–57. Suche in Google Scholar

[10] J. Sinsomboonthong, Confidence interval estimations of the parameter for one parameter exponential distribution, IAENG Int. J. Appl. Math. 45 (2015), no. 4, 343–353. Suche in Google Scholar

[11] K. Vännman, A unified approach to capability indices, Statist. Sinica 5 (1995), 805–820. Suche in Google Scholar

[12] R. Vishnu Vardhan and K. V. S. Sarma, Estimation of the area under ROC curve using confidence interval of mean, ANU J. Phys. Sci. 2 (2010), no. 1, 29–39. Suche in Google Scholar

[13] P. A. Wright, A process capability index sensitive to skewness, J. Stat. Comput. Simul. 52 (1995), 195–203. 10.1080/00949659508811673Suche in Google Scholar

Received: 2019-02-23
Revised: 2019-09-16
Accepted: 2019-09-16
Published Online: 2019-10-15
Published in Print: 2019-12-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 9.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/eqc-2019-0005/pdf
Button zum nach oben scrollen