Abstract
Recently, G. Rajesh, E. I. Abdul-Sathar and S. Nair Rohini [G. Rajesh, E. I. Abdul-Sathar and S. Nair Rohini, On dynamic weighted survival entropy of order α, Comm. Statist. Theory Methods 46 2017, 5, 2139–2150] proposed a measure of uncertainty based on the survival function called weighted survival entropy of order α. They have also introduced the dynamic form of a measure called dynamic weighted survival entropy of order α and studied various properties in the context of reliability modeling. In this paper, we extend these measures into the bivariate setup and study its properties. We also look into the problem of extending the same measure for conditionally specified models. Empirical and non-parametric estimators are suggested for the proposed measure using the conditionally specified model, and the effect of the proposed estimators is illustrated using simulated and real data sets.
Acknowledgements
The authors wish to thank the editor in chief and the anonymous reviewers for their valuable and constructive comments which have improved the contents of the article.
References
[1] M. Abbasnejad, N. R. Arghami, S. Morgenthaler and G. R. Mohtashami Borzadaran, On the dynamic survival entropy, Statist. Probab. Lett. 80 (2010), 1962–1971. 10.1016/j.spl.2010.08.026Suche in Google Scholar
[2] E. I. Abdul-Sathar, R. S. Nair and G. Rajesh, Bivariate dynamic weighted failure entropy of order α, Amer. J. Math. Manag. Sci. (2018), 10.1080/01966324.2018.1483855. 10.1080/01966324.2018.1483855Suche in Google Scholar
[3] E. I. Abdul-Sathar, G. Rajesh and K. R. M. Nair, Bivariate geometric vitality function and some characterization results, Calcutta Statist. Assoc. Bull. 62 (2010), no. 247–248, 207–227. 10.1177/0008068320100305Suche in Google Scholar
[4] I. A. Ahmad and P. E. Lin, Nonparametric estimation of a vector-valued bivariate failure rate, Ann. Statist. 5 (1977), no. 5, 1027–1038. 10.1214/aos/1176343957Suche in Google Scholar
[5] J. Ahmadi, A. Di Crescenzo and M. Longobardi, On dynamic mutual information for bivariate lifetimes, Adv. in Appl. Probab. 47 (2015), no. 4, 1157–1174. 10.1239/aap/1449859804Suche in Google Scholar
[6] M. Belis and S. Guiasu, A quantitative-qualitative measure of information in cybernetic systems (corresp.), IEEE Trans. Inform. Theory 14 (1968), 593–594. 10.1109/TIT.1968.1054185Suche in Google Scholar
[7] A. Di Crescenzo and M. Longobardi, On weighted residual and past entropies, Sci. Math. Jpn. 64 (2006), no. 2, 255–266. Suche in Google Scholar
[8] N. Ebrahimi, S. N. U. A. Kirmani and E. S. Soofi, Multivariate dynamic information, J. Multivariate Anal. 98 (2007), no. 2, 328–349. 10.1016/j.jmva.2005.08.004Suche in Google Scholar
[9] R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis, 3rd ed., Prentice Hall, Englewood Cliffs, 1992. Suche in Google Scholar
[10] A. Kundu and C. Kundu, Bivariate extension of (dynamic) cumulative past entropy, Comm. Statist. Theory Methods 46 (2017), no. 9, 4163–4180. 10.1080/03610926.2015.1080838Suche in Google Scholar
[11] D. Y. Lin and Z. Ying, A simple nonparametric estimator of the bivariate survival function under univariate censoring, Biometrika 80 (1993), no. 3, 573–581. 10.1093/biomet/80.3.573Suche in Google Scholar
[12] S. S. Maya and S. M. Sunoj, Some dynamic generalized information measures in the context of weighted models, Statistica (Bologna) 68 (2008), no. 1, 71–84. Suche in Google Scholar
[13] F. Misagh, Y. Panahi, G. H. Yari and R. Shahi, Weighted cumulative entropy and its estimation, 2011 IEEE International Conference on Quality and Reliability (ICQR), IEEE Press, Piscataway (2011), 477–480. 10.1109/ICQR.2011.6031765Suche in Google Scholar
[14] N. U. Nair and S. M. Sunoj, Form-invariant bivariate weighted models, Statistics 37 (2003), no. 3, 259–269. 10.1080/0233188031000078024Suche in Google Scholar
[15] R. S. Nair, E. I. Abdul-Sathar and G. Rajesh, A study on dynamic weighted failure entropy of order α, Amer. J. Math. Manag. Sci. 36 (2017), no. 2, 137–149. 10.1080/01966324.2017.1298063Suche in Google Scholar
[16] J. Navarro, Y. del Aguila and J. M. Ruiz, Characterizations through reliability measures from weighted distributions, Statist. Papers 42 (2001), no. 3, 395–402. 10.1007/s003620100066Suche in Google Scholar
[17] J. Navarro, S. M. Sunoj and M. N. Linu, Characterizations of bivariate models using some dynamic conditional information divergence measures, Comm. Statist. Theory Methods 43 (2014), no. 9, 1939–1948. 10.1080/03610926.2012.677925Suche in Google Scholar
[18] B. O. Oluyede and M. Terbeche, On energy and expected uncertainty measures in weighted distributions, Int. Math. Forum 2 (2007), no. 17–20, 947–956. 10.12988/imf.2007.07082Suche in Google Scholar
[19] A. G. Pakes, J. Navarro, J. M. Ruiz and Y. del Aguila, Characterizations using weighted distributions, J. Statist. Plann. Inference 116 (2003), no. 2, 389–420. 10.1016/S0378-3758(02)00357-9Suche in Google Scholar
[20] G. Rajesh, E. I. Abdul-Sathar and K. R. Muraleedharan Nair, Bivariate extension of residual entropy and some characterization results, J. Indian Statist. Assoc. 47 (2009), no. 1, 91–107. Suche in Google Scholar
[21] G. Rajesh, E. I. Abdul-Sathar, K. R. Muraleedharan Nair and K. V. Reshmi, Bivariate extension of dynamic cumulative residual entropy, Stat. Methodol. 16 (2014), 72–82. 10.1016/j.stamet.2013.07.006Suche in Google Scholar
[22] G. Rajesh, E. I. Abdul-Sathar and R. S. Nair, Bivariate weighted residual and past entropies, J. Japan Statist. Soc. 46 (2016), no. 2, 165–187. 10.14490/jjss.46.165Suche in Google Scholar
[23] G. Rajesh, E. I. Abdul-Sathar and S. Nair Rohini, On dynamic weighted survival entropy of order α, Comm. Statist. Theory Methods 46 (2017), no. 5, 2139–2150. 10.1080/03610926.2015.1033552Suche in Google Scholar
[24] C. R. Rao, On discrete distributions arising out of methods of ascertainment, Sankhyā Ser. A 27 (1965), 311–324. Suche in Google Scholar
[25] M. Rao, Y. Chen, B. C. Vemuri and F. Wang, Cumulative residual entropy: A new measure of information, IEEE Trans. Inform. Theory 50 (2004), no. 6, 1220–1228. 10.1109/TIT.2004.828057Suche in Google Scholar
[26] A. Rényi, On measures of entropy and information, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, University California Press, Berkeley (1961), 547–561. Suche in Google Scholar
[27] M. M. Sati and H. Singh, Bivariate dynamic cummulative residual Tsallis entropy, J. Appl. Math. Inform. 35 (2017), no. 1–2, 45–58. 10.14317/jami.2017.045Suche in Google Scholar
[28] C. E. Shannon, A mathematical theory of communication, Bell System Tech. J. 27 (1948), 379–423, 623–656. 10.1002/j.1538-7305.1948.tb01338.xSuche in Google Scholar
[29] C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Statist. Phys. 52 (1988), no. 1–2, 479–487. 10.1007/BF01016429Suche in Google Scholar
[30] K. Zografos and S. Nadarajah, Survival exponential entropies, IEEE Trans. Inform. Theory 51 (2005), no. 3, 1239–1246. 10.1109/TIT.2004.842772Suche in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Quality Analysis in Acyclic Production Networks
- Bivariate Dynamic Weighted Survival Entropy of Order 𝛼
- Optimal Design of Reliability Acceptance Sampling Plan Based on Sequential Order Statistics
- A New Method of Estimating the Process Capability Index with Exponential Distribution Using Interval Estimate of the Parameter
- Developing a Flexible Methodology for Modeling and Solving Multiple Response Optimization Problems
- On the Reliability for Some Bivariate Dependent Beta and Kumaraswamy Distributions: A Brief Survey
Artikel in diesem Heft
- Frontmatter
- Quality Analysis in Acyclic Production Networks
- Bivariate Dynamic Weighted Survival Entropy of Order 𝛼
- Optimal Design of Reliability Acceptance Sampling Plan Based on Sequential Order Statistics
- A New Method of Estimating the Process Capability Index with Exponential Distribution Using Interval Estimate of the Parameter
- Developing a Flexible Methodology for Modeling and Solving Multiple Response Optimization Problems
- On the Reliability for Some Bivariate Dependent Beta and Kumaraswamy Distributions: A Brief Survey