Abstract
Although the Hispanic population is continuously growing in the United States, they are underrepresented in pharmacogenetic studies. This review addresses the need for compiling available pharmacogenetic data in US Hispanics, discussing the prevalence of clinically relevant polymorphisms in pharmacogenes encoding for drug-metabolizing enzymes. CYP3A5*3 (0.245–0.867) showed the largest frequency in a US Hispanic population. A higher prevalence of CYP2C9*3, CYP2C19*4, and UGT2B7 IVS1+985 A>G was observed in US Hispanic vs. non-Hispanic populations. We found interethnic and intraethnic variability in frequencies of genetic polymorphisms for metabolizing enzymes, which highlights the need to define the ancestries of participants in pharmacogenetic studies. New approaches should be integrated in experimental designs to gain knowledge about the clinical relevance of the unique combination of genetic variants occurring in this admixed population. Ethnic subgroups in the US Hispanic population may harbor variants that might be part of multiple causative loci or in linkage-disequilibrium with functional variants. Pharmacogenetic studies in Hispanics should not be limited to ascertain commonly studied polymorphisms that were originally identified in their parental populations. The success of the Personalized Medicine paradigm will depend on recognizing genetic diversity between and within US Hispanics and the uniqueness of their genetic backgrounds.
Acknowledgments
The material in this review is partially the result of work supported with resources and the use of facilities at the Veteran Affairs Caribbean Health System in San Juan, Puerto Rico. We thank the UPR-MSC RCMI Center for Genomics in Health Disparities and Rare Disorders and the Laboratory of Personalized Medicine, Hartford, CT, for support. We also thank Dr. Susan Corey, Dr. Andrea Gaedigk, and Mr. Freddie Hernandez for their help in this review. Finally, we thank all patients for their participation in these studies.
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission. They have no other relevant affiliation or financial involvement with any organization or entity with a financial interest in or conflicts of interest with the subject matter or materials discussed in the article that need to be disclosed. No writing assistance was utilized in the production of this manuscript.
Research funding: This work was supported in part by a grant from the National Heart, Lung and Blood Institute (SC2HL110393) and Research Center in Minority Institutions (RCMI) grants from the National Center for Research Resources (2G12-RR003051) and the National Institute on Minority Health and Health Disparities (8G12-MD007600) of the National Institutes of Health (NIH). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH or the US Government.
Employment or leadership: G. Ruaño is founder and president of Genomas Inc. Jorge Duconge and Karla Claudio-Campos also held a without compensation (WOC) employment status with the VA Caribbean Healthcare Systems (VACHS), Pharmacy Service, in San Juan, Puerto Rico.
Honorarium: None declared.
Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.
References
1. U.S. Food and Drug Administration (FDA). Codeine Use in Certain Children after tonsillectomy and/or adenoidectomy: Drug Safety Communication- risk of rare, but life-threatening adverse events or death. Available at: www.fda.gov/safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm315627.htm (accessed April 18, 2014).Suche in Google Scholar
2. Meyer UA. Adverse drug reactions. Pharmacogenetics and adverse drug reactions. Lancet 2000;356:1667–71.10.1016/S0140-6736(00)03167-6Suche in Google Scholar
3. Budnitz DS, Pollock DA, Weidenbach KN, Mendelsohn AB, Schroeder TJ, Annest JL. National surveillance of emergency department visits for outpatient adverse drug events. J Am Med Assoc 2006;296:1858–66.10.1001/jama.296.15.1858Suche in Google Scholar PubMed
4. Phillips KA, Veenstra DL, Oren E, Lee JK. Potential role of pharmacogenomics: a systematic review. J Am Med Assoc 2001;286:2270–9.10.1001/jama.286.18.2270Suche in Google Scholar PubMed
5. Kimmel SE, French B, Kasner SE, Johnson JA, Anderson JL, Gage BF, et al. A pharmacogenetic versus a clinical algorithm for warfarin dosing. N Engl J Med 2013;369:2283–93.10.1056/NEJMoa1310669Suche in Google Scholar PubMed PubMed Central
6. Ramos E, Callier SL, Rotimi CN. Why personalized medicine will fail if we stay the course. Per Med 2013;9:839–47.10.2217/pme.12.100Suche in Google Scholar PubMed PubMed Central
7. Suarez-Kurtz G. Pharmacogenomics in admixed populations. Austin, Texas: Landes Bioscience, 2007.10.1201/9781498713795Suche in Google Scholar
8. Suarez-Kurtz G, Pena SD. Pharmacogenomics in the Americas: the impact of genetic admixture. Curr Drug Targets 2006;7:1649–58.10.2174/138945006779025392Suche in Google Scholar PubMed
9. Via M, Gignoux CR, Roth LA, Fejerman L, Galanter J, Choudhry S, et al. History shaped the geographic distribution of genomic admixture on the island of Puerto Rico. PLoS One 2011;6:e16513. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3031579&tool=pmcentrez&rendertype=abstract. Cited May 4, 2014.10.1371/journal.pone.0016513Suche in Google Scholar
10. Ruaño G, Duconge J, Windemuth A, Cadilla CL, Villagra D, Renta J, et al. Physiogenomic analysis of the Puerto Rican population. Pharmacogenomics 2010;10:565–77.10.2217/pgs.09.5Suche in Google Scholar PubMed PubMed Central
11. Bryc K, Velez C, Karafet T, Moreno-Estrada A, Reynolds A, Auton A, et al. Colloquium paper: genome-wide patterns of population structure and admixture among Hispanic/Latino populations. Proc Natl Acad Sci USA 2010;107:8954–61.10.1073/pnas.0914618107Suche in Google Scholar PubMed PubMed Central
12. Ong RT, Teo Y-Y. varLD: a program for quantifying variation in linkage disequilibrium patterns between populations. Bioinformatics 2010;26:1269–70.10.1093/bioinformatics/btq125Suche in Google Scholar PubMed
13. U.S. Census Bureau. Profile America facts for features. Hispanic Heritage Month 2013: Sept. 15-Oct. 15. Available at: https://www.census.gov/content/dam/Census/newsroom/facts-for-features/2013/cb13ff-19_hispanicheritage.pdf (accessed April 18, 2014).Suche in Google Scholar
14. Goodman LS, Gilman A, Brunton LL, Lazo JS, Parker KL. Goodman & Gilman’s the pharmacological basis of therapeutics, 11th ed. Brunton LL, Lazo JS, Parker KL, editors. New York: McGraw-Hill, 2005.Suche in Google Scholar
15. Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 2013;138:103–41.10.1016/j.pharmthera.2012.12.007Suche in Google Scholar
16. Van Booven D, Marsh S, McLeod H, Carrillo MW, Sangkuhl K, Klein TE, et al. Cytochrome P450 2C9-CYP2C9. Pharmacogenet Genomics 2010;20:277–81.10.1097/FPC.0b013e3283349e84Suche in Google Scholar
17. Goldstein JA. Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br J Clin Pharmacol 2001;52:349–55.10.1046/j.0306-5251.2001.01499.xSuche in Google Scholar
18. Williams PA, Cosme J, Ward A, Angove HC, Matak Vinković D, Jhoti H. Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 2003;424:464–8.10.1038/nature01862Suche in Google Scholar
19. Rifkind A, Lee C, Chang TK, Waxman DJ. Arachidonic acid metabolism by human cytochrome oxygenation and evidence for a role for CYP2C enzymes in arachidonic acid epoxygenation in human liver microsomes. Arch Biochem Biophys 1995;380:380–9.10.1016/0003-9861(95)90023-3Suche in Google Scholar
20. Human Cythochrome P450 (CYP) Allele Nomenclature Committee. The Human Cytochrome P450 (CYP) Allele Nomenclature Database. Available at: http://www.cypalleles.ki.se/index.htm. Cited April 19, 2014.Suche in Google Scholar
21. Cariaso M, Lennon G. SNPedia. SNPedia: a wiki supporting personal genome annotation, interpretation and analysis. 2012;D1308–D1312. Available at: http://www.snpedia.com/index.php/Rs4986893. Cited June 23, 2014.10.1093/nar/gkr798Suche in Google Scholar
22. Rettie AE, Wienkers LC, Gonzalez FJ, Trager WF, Korzekwa KR. Impaired (S)-warfarin metabolism catalysed by the R144C allelic variant of CYP2C9. Pharmacogenetics 1994;4:39–42.10.1097/00008571-199402000-00005Suche in Google Scholar PubMed
23. Crespi C, Miller V. The R144C change in the CYP2C9*2 allele alters interaction of the cytochrome P450 with NADPH: cytochrome P450 oxidoreductase. Pharmacogenetics 1997;7:203–10.10.1097/00008571-199706000-00005Suche in Google Scholar PubMed
24. van der Weide J, Steijns LS, van Weelden MJ. The effect of genetic polymorphism of cytochrome P450 CYP2C9 on phenytoin dose requirement. Pharmacogenetics 2001;11:287–91.10.1097/00008571-200106000-00002Suche in Google Scholar PubMed
25. Dorado P, Lopez-Torres E, Penas-Lledo E, Martinez-Anton J, Llerena A. Neurological toxicity after phenytoin infusion in a pediatric patient with epilepsy: influence of CYP2C9, CYP2C19, and ABCB1 genetic polymorphisms. Pharm J 2013;13:359–61.10.1038/tpj.2012.19Suche in Google Scholar PubMed
26. Hallberg P, Karlsson J, Kurland L, Lind L, Kahan T, Malmqvist K, et al. The CYP2C9 genotype predicts the blood pressure response to irbesartan: results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation vs Atenolol (SILVHIA) trial. J Hypertens 2002;20:2089–93.10.1097/00004872-200210000-00030Suche in Google Scholar PubMed
27. King BP, Khan TI, Aithal GP, Kamali F, Daly AK. Upstream and coding region CYP2C9 polymorphisms: correlation with warfarin dose and metabolism. Pharmacogenetics 2004;14:813–22.10.1097/00008571-200412000-00004Suche in Google Scholar PubMed
28. Steward DJ, Haining RL, Henne KR, Davis G, Rushmore TH, Trager WF, et al. Genetic association between sensitivity to warfarin and expression of CYP2C9*3. Pharmacogenetics 1997;7:361–7.10.1097/00008571-199710000-00004Suche in Google Scholar PubMed
29. Cavallari L, Langaee TY, Momary K, Shapiro N, Nutescu E, Coty W, et al. Genetic and clinical predictors of warfarin dose requirements in African Americans. Clin Pharmacol Ther 2010;87:459–64.10.1038/clpt.2009.223Suche in Google Scholar PubMed
30. Seip RL, Duconge J, Ruaño G. Implementing genotype-guided antithrombotic therapy. Future Cardiol 2010;6:409–24.10.2217/fca.10.6Suche in Google Scholar PubMed PubMed Central
31. Taube J, Halsall D, Baglin T. Influence of cytochrome P-450 CYP2C9 polymorphisms on warfarin sensitivity and risk of over-anticoagulation in patients on long-term treatment. Blood 2000;96:1816–9.10.1182/blood.V96.5.1816Suche in Google Scholar
32. Wu AH. Use of genetic and nongenetic factors in warfarin dosing algorithms. Pharmacogenomics 2007;8:851–61.10.2217/14622416.8.7.851Suche in Google Scholar PubMed
33. Hillman MA, Wilke RA, Caldwell MD, Berg RL, Glurich I, Burmester JK. Relative impact of covariates in prescribing warfarin according to CYP2C9 genotype. Pharmacogenetics 2004;14:539–47.10.1097/01.fpc.0000114760.08559.dcSuche in Google Scholar PubMed
34. Scordo MG, Pengo V, Spina E, Dahl ML, Gusella M, Padrini R. Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Clin Pharmacol Ther 2002;72:702–10.10.1067/mcp.2002.129321Suche in Google Scholar PubMed
35. Higashi MK, Veenstra DL, Kondo LM, Wittkowsky AK, Srinouanprachanh S, Farin FM, et al. Association Between CYP2C9 Genetic Variants and Anticoagulation-related outcomes during warfarin therapy. J Am Med Assoc 2002;287:1690–8.10.1001/jama.287.13.1690Suche in Google Scholar PubMed
36. Schwarz UI, Ritchie MD, Bradford Y, Li C, Dudek SM, Frye-Anderson A, et al. Genetic determinants of response to warfarin during initial anticoagulation. N Engl J Med 2008;358:999–1008.10.1056/NEJMoa0708078Suche in Google Scholar PubMed PubMed Central
37. U.S. Food and Drug Administration (FDA). Medication Guide Coumadin (warfarin sodium). Available at: http://www.fda.gov/downloads/Drugs/DrugSafety/ucm088578.pdf (accessed June 17, 2014). Reference id: 3022954.Suche in Google Scholar
38. Valentin II, Rivera G, Nieves-Plaza M, Cruz I, Renta JY, Cadilla CL, et al. Pharmacogenetic association study of warfarin safety endpoints in Caribbean Hispanics. P R Health Sci J 2014;33:97–104.Suche in Google Scholar
39. Epstein RS, Moyer TP, Aubert RE, O Kane DJ, Xia F, Verbrugge RR, et al. Warfarin genotyping reduces hospitalization rates results from the MM-WES (Medco-Mayo Warfarin Effectiveness study). J Am Coll Cardiol 2010;55:2804–12.10.1016/j.jacc.2010.03.009Suche in Google Scholar PubMed
40. Centers for Medicare and Medicaid Services. Decision memo for pharmacogenomic testing for warfarin response (CAG-00400N). Centers for Medicare and Medicaid Services. 2009. Available at: http://www.cms.hhs.gov/mcd/search.asp. Cited June 21, 2014.Suche in Google Scholar
41. Anderson JL, Horne BD, Stevens SM, Woller SC, Samuelson KM, Mansfield JW, et al. A randomized and clinical effectiveness trial comparing two pharmacogenetic algorithms and standard care for individualizing warfarin dosing (CoumaGen-II). Circulation. 2012;125:1997–2005.10.1161/CIRCULATIONAHA.111.070920Suche in Google Scholar PubMed
42. Wysowski DK, Nourjah P, Swartz L. Bleeding complications with warfarin use: a prevalent adverse effect resulting in regulatory action. J Am Med Assoc 2007;167:1414–9.10.1001/archinte.167.13.1414Suche in Google Scholar PubMed
43. McWilliam A, Lutter R, Nardinelli C. Health care savings from personalized medicine using genetic testing: The case of warfarin. Working Paper 06-23, AE1-Brookings Joint Center for Regulatory Studies. 2006. Available at: www.aei-brookings.org/admin/authorpdfs/page.php?id=1337&PHPsEssID=7b3a3ae4b30d77cb76223e29535e7590. Cited October 18, 2012.Suche in Google Scholar
44. Eckman M, Rosand J, Greenberg S, Gage B. Cost-effectiveness of using pharmacogenetic information in warfarin dosing for patients with nonvalvular atrial fibrillation. Ann Intern Med 2009;150:73–83.10.7326/0003-4819-150-2-200901200-00005Suche in Google Scholar PubMed
45. Amigo J, Salas A, Phillips C, Carracedo A. SPSmart: adapting population based SNP genotype databases for fast and comprehensive web access. BMC Bioinf 2008;9:428.10.1186/1471-2105-9-428Suche in Google Scholar PubMed PubMed Central
46. Llerena A, Dorado P, O’Kirwan F, Jepson R, Licinio J, Wong M-L. Lower frequency of CYP2C9*2 in Mexican-Americans compared to Spaniards. Pharm J 2004;4:403–6.10.1038/sj.tpj.6500278Suche in Google Scholar PubMed
47. Kramer MA, Rettie AE, Rieder MJ, Cabacungan ET, Hines RN. Novel CYP2C9 Promoter variants and assessment of their impact on gene expression. Mol Pharmacol 2008;73:1751–60.10.1124/mol.107.044149Suche in Google Scholar PubMed PubMed Central
48. Cavallari LH, Momary KM, Patel SR, Shapiro NL, Nutescu E, Viana MA. Pharmacogenomics of warfarin dose requirements in Hispanics. Blood Cells Mol Dis 2011;46:147–50.10.1016/j.bcmd.2010.11.005Suche in Google Scholar PubMed
49. Rosemary J, Adithan C. The pharmacogenetics of CYP2C9 and CYP2C19: ethnic variation and clinical significance. Curr Clin Pharmacol 2007;2:93–109.10.2174/157488407779422302Suche in Google Scholar PubMed
50. Dorado P, Sosa-Macias MG, Peñas-Lledó EM, Alanis-Bañuelos RE, Wong M-L, Licinio J, et al. CYP2C9 allele frequency differences between populations of Mexican-Mestizo, Mexican-Tepehuano, and Spaniards. Pharm J 2011;11:108–12.10.1038/tpj.2010.29Suche in Google Scholar PubMed
51. Duconge J, Cadilla C, Windemuth A, Kocherla M, Gorowski K, Seip RL, et al. Prevalence of combinatorial CYP2C9 and VKORC1 genotypes in Puerto Ricans: implications for warfarin management in Hispanics. Ethn Dis 2009;19:390–5.Suche in Google Scholar
52. Ramos AS, Seip RL, Rivera-Miranda G, Felici-Giovanini ME, Garcia-Berdecia R, Alejandro-Cowan Y, et al. Development of a pharmacogenetic-guided warfarin dosing algorithm for Puerto Rican patients. Pharmacogenomics 2012;13:1937–50.10.2217/pgs.12.171Suche in Google Scholar PubMed PubMed Central
53. Valentin II, Vazquez J, Rivera-Miranda G, Seip RL, Velez M, Kocherla M, et al. Prediction of warfarin dose reductions in Puerto Rican patients, based on combinatorial CYP2C9 and VKORC1 genotypes. Ann Pharmacother 2012;46:208–18.10.1345/aph.1Q190Suche in Google Scholar PubMed PubMed Central
54. Llerena A, Alvarez M, Dorado P, Gonzalez I, Peñas-Lledó E, Perez B, et al. Interethnic differences in the relevance of CYP2C9 genotype and environmental factors for diclofenac metabolism in Hispanics from Cuba and Spain. Pharm J 2013;14:229–34.10.1038/tpj.2013.28Suche in Google Scholar
55. Scott SA, Khasawneh R, Peter I, Kornreich R, Desnick RJ. Combined CYP2C9, VKORC1 and CYP2F4 frequencies among racial and ethnic groups. Pharmacogenomics 2010;11:781–91.10.2217/pgs.10.49Suche in Google Scholar PubMed PubMed Central
56. Wu AH, Wang P, Smith A, Haller C, Drake K, Linder M, et al. Dosing algorithm for warfarin using CYP2C9 and VKORC1 genotyping from a multi-ethnic population: comparison with other equations. Pharmacogenomics 2008;9:169–78.10.2217/14622416.9.2.169Suche in Google Scholar PubMed
57. International HapMap Consortium. International HapMap Project. HapMap project dataset release no. 28, Phase I, II & III. 2010. Available at: http://hapmap.ncbi.nlm.nih.gov/. Cited September 1, 2010.Suche in Google Scholar
58. Villagra D, Duconge J, Windemuth A, Cadilla CL, Kocherla M, Gorowski K, et al. CYP2C9 and VKORC1 genotypes in Puerto Ricans: a case for admixture-matching in clinical pharmacogenetics studies. Clin Chim Acta 2010;411:1306–11.10.1016/j.cca.2010.05.021Suche in Google Scholar PubMed PubMed Central
59. Duconge J, Ruaño G. The emerging role of admixture in the pharmacogenetics of Puerto Rican Hispanics. J Pharm Pharmacoproteomics 2010;1:1–9.Suche in Google Scholar
60. Tayo BO, Teil M, Tong L, Qin H, Khitrov G, Zhang W, et al. Genetic background of patients from a university medical center in Manhattan: implications for personalized medicine. PLoS One 2011;6:e19166. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3087725&tool=pmcentrez&rendertype=abstract. Cited May 6, 2014.10.1371/journal.pone.0019166Suche in Google Scholar
61. Scott SA, Jaremko M, Lubitz SA, Kornreich R, Halperin JL, Desnick RJ. CYP2C9*8 is prevalent among African-Americans: implications for pharmacogenetic dosing. Pharmacogenet Genomics 2009;10:1243–55.10.2217/pgs.09.71Suche in Google Scholar PubMed PubMed Central
62. Yong L, Jeong H-Y, Takahashi H, Drozda K, Patel SR, Shapiro NL, et al. Decreased warfarin clearance with CYP2C9 R150H (*8) polymorphism. Clin Pharmacol Ther 2012;91:660–5.10.1038/clpt.2011.269Suche in Google Scholar PubMed PubMed Central
63. Scott SA, Sangkuhl K, Shuldiner AR, Hulot J-S, Thorn CF, Altman RB, et al. PharmGKB summary: very important pharmacogene information for cytochrome P450, family 2, subfamily C, polypeptide 19. Pharmacogenet Genomics 2012;22:159–65.10.1097/FPC.0b013e32834d4962Suche in Google Scholar PubMed PubMed Central
64. Luo H-R, Poland RE, Lin K-M, Wan Y-JY. Genetic polymorphism of cytochrome P450 2C19 in Mexican Americans: a cross-ethnic comparative study. Clin Pharmacol Ther 2006;80:33–40.10.1016/j.clpt.2006.03.003Suche in Google Scholar PubMed
65. FDA. FDA Announces new boxed warning on Plavix alerts patients, health care professionals to potential for reduced effectiveness. FDA News Release. 2010. Available at: http://www.fda.gov/newsevents/newsroom/pressannouncements/ucm204253.htm. Cited June 17, 2014.Suche in Google Scholar
66. Orengo-Mercado C, Nieves B, López L, Vallés-Ortiz N, Renta JY, Santiago-Borrero PJ, et al. Frequencies of functional polymorphisms in three pharmacokinetic genes of clinical interest within the admixed Puerto Rican population. J Pharm Pharmacoproteomics 2013;4:1–6.10.4172/2153-0645.1000113Suche in Google Scholar PubMed PubMed Central
67. Duconge J, Cadilla CL, Renta JY, Silen-Rivera P, Piovanetti P, Garcia-Berdecia R, et al. Prevalence of CYP2C19 gene polymorphisms in the Puerto Rican population: a preliminary report. P R Health Sci J 2008;27:2–3.Suche in Google Scholar
68. Duconge J, Escalera O, Korchela M, Ruaño G. Clinical Implications of Genetic Admixture in Hispanic Puerto Ricans: Impact on the Pharmacogenetics of CYP2C19 and PON1. In: Sanodou D, editor. Clinical Applications of Pharmacogenetics. Rijeka: InTech, 2012:151–63.10.5772/28567Suche in Google Scholar
69. Martis S, Peter I, Hulot J-S, Kornreich R, Desnick RJ, Scott SA. Multi-ethnic distribution of clinically relevant CYP2C genotypes and haplotypes. Pharmacogenomics 2013;13:369–77.10.1038/tpj.2012.10Suche in Google Scholar PubMed PubMed Central
70. Owen RP, Sangkuhl K, Klein TE, Altman RB. Cytochrome P450 2D6. Pharmacogenet Genomics 2009;19:559–62.10.1097/FPC.0b013e32832e0e97Suche in Google Scholar PubMed PubMed Central
71. Yu A-M, Idle JR, Herraiz T, Küpfer A, Gonzalez FJ. Screening for endogenous substrates reveals that CYP2D6 is a 5-methoxyindolethylamine O-demethylase. Pharmacogenetics 2003;13:307–19.10.1097/00008571-200306000-00002Suche in Google Scholar
72. Hiroi T, Kishimoto W, Chow T, Imaoka S, Igarashi T, Funae Y. Progesterone oxidation by cytochrome P450 2D isoforms in the brain. Endocrinology 2001;142:3901–8.10.1210/endo.142.9.8363Suche in Google Scholar PubMed
73. Niwa T, Hiroi T, Tsuzuki D, Yamamoto S, Narimatsu S, Fukuda T, et al. Effect of genetic polymorphism on the metabolism of endogenous neuroactive substances, progesterone and p-tyramine, catalyzed by CYP2D6. Brain Res Mol Brain Res 2004;129:117–23.10.1016/j.molbrainres.2004.06.030Suche in Google Scholar PubMed
74. González I, Peñas-Lledó EM, Pérez B, Dorado P, Alvarez M, LLerena A. Relation between CYP2D6 phenotype and genotype and personality in healthy volunteers. Pharmacogenomics 2008;9:833–40.10.2217/14622416.9.7.833Suche in Google Scholar PubMed
75. Bijl MJ, van Schaik RH, Lammers LA, Hofman A, Vulto AG, van Gelder T, et al. The CYP2D6*4 polymorphism affects breast cancer survival in tamoxifen users. Breast Cancer Res Treat 2009;118:125–30.10.1007/s10549-008-0272-2Suche in Google Scholar PubMed
76. Kirchheiner J, Schmidt H, Tzvetkov M, Keulen J-T, Lötsch J, Roots I, et al. Pharmacokinetics of codeine and its metabolite morphine in ultra-rapid metabolizers due to CYP2D6 duplication. Pharm J 2007;7:257–65.10.1038/sj.tpj.6500406Suche in Google Scholar PubMed
77. Gasche Y, Daali Y, Fathi M, Chiappe A, Cottini S, Dayer P, et al. Codeine intoxication associated with ultrarapid CYP2D6 metabolism. N Engl J Med 2004;351:2827–31.10.1056/NEJMoa041888Suche in Google Scholar PubMed
78. Kelly LE, Rieder M, van den Anker J, Malkin B, Ross C, Neely MN, et al. More codeine fatalities after tonsillectomy in North American children. Pediatrics 2012;129:e1343–7.10.1542/peds.2011-2538Suche in Google Scholar PubMed
79. González-Tejera G, Gaedigk A, Corey S. Genetic variants of the drug-metabolizing enzyme CYP2D6 in Puerto Rican psychiatry patients: a preliminary report and potential implications for breast cancer patients. P R Health Sci J 2010;29:299–304.Suche in Google Scholar
80. Llerena A, Dorado P, Ramírez R, González I, Alvarez M, Peñas-Lledó EM, et al. CYP2D6 genotype and debrisoquine hydroxylation phenotype in Cubans and Nicaraguans. Pharm J 2012;12:176–83.10.1038/tpj.2010.85Suche in Google Scholar
81. Luo H-R, Gaedigk A, Aloumanis V, Wan Y-JY. Identification of CYP2D6 impaired functional alleles in Mexican Americans. Eur J Clin Pharmacol 2005;61:797–802.10.1007/s00228-005-0044-4Suche in Google Scholar
82. Casner PR. The effect of CYP2D6 polymorphisms on dextromethorphan metabolism in Mexican Americans. J Clin Pharmacol 2005;45:1230–5.10.1177/0091270005280755Suche in Google Scholar
83. Mendoza R, Wan Y-JY, Poland RE, Smith M, Zheng Y, Berman N, et al. CYP2D6 polymorphism in a Mexican American population. Clin Pharmacol Ther 2001;70:552–60.10.1067/mcp.2001.120675Suche in Google Scholar
84. Gaedigk A, Isidoro-García M, Pearce RE, Sánchez S, García-Solaesa V, Lorenzo-Romo C, et al. Discovery of the nonfunctional CYP2D6 31 allele in Spanish, Puerto Rican, and US Hispanic populations. Eur J Clin Pharmacol 2010;66:859–64.10.1007/s00228-010-0831-4Suche in Google Scholar
85. Adams SM, Bosch E, Balaresque PL, Ballereau SJ, Lee AC, Arroyo E, et al. The genetic legacy of religious diversity and intolerance: paternal lineages of Christians, Jews, and Muslims in the Iberian Peninsula. Am J Hum Genet 2008;83:725–36.10.1016/j.ajhg.2008.11.007Suche in Google Scholar
86. Bradford LD, Gaedigk A, Leeder JS. High frequency of CYP2D6 poor and “intermediate” metabolizers in black populations: a review and preliminary data. Psychopharmacol Bull 1998;34:797–804.Suche in Google Scholar
87. Whirl-Carrillo M, McDonagh E, Hebert J, Gong L, Sangkuhl K, Thorn CF, et al. Pharmacogenomics knowledge for Personalized Medicine. Clin Pharmacol Ther 2013;92:414–7.10.1038/clpt.2012.96Suche in Google Scholar
88. Lamba J, Hebert JM, Schuetz EG, Klein TE, Altman RB. PharmGKB summary: very important pharmacogene information for CYP3A5. Pharmacogenet Genomics 2012;22:555–8.10.1097/FPC.0b013e328351d47fSuche in Google Scholar
89. Paine MF, Hart HL, Ludington SS, Haining RL, Rettie AE, Zeldin DC. The human intestinal cytochrome P450 “PIE.” Drug Metab Dispos 2006;34:880–6.10.1124/dmd.105.008672Suche in Google Scholar
90. Macé K, Bowman ED, Vautravers P, Shields PG, Harris CC, Pfeifer AM. Characterisation of xenobiotic-metabolising enzyme xxpression in human bronchial mucosa and peripheral lung issues. Eur J Cancer 1998;34:914–20.10.1016/S0959-8049(98)00034-3Suche in Google Scholar
91. Agúndez JA, Martínez C, Olivera M, Gallardo L, Ladero JM, Rosado C, et al. Expression in human prostate of drug- and carcinogen-metabolizing enzymes: association with prostate cancer risk. Br J Cancer 1998;78:1361–7.10.1038/bjc.1998.685Suche in Google Scholar
92. Paris PL, Kupelian PA, Hall JM, Williams TL, Levin H, Klein EA, et al. Association between a CYP3A4 genetic variant and clinical presentation in African-American prostate cancer patients. Cancer Epidemiol Biomarkers Prev 1999;8:901–5.Suche in Google Scholar
93. Blanco JG, Edick MJ, Hancock ML, Winick NJ, Dervieux T, Amylon MD, et al. Genetic polymorphisms in CYP3A5, CYP3A4 and NQO1 in children who developed therapy-related myeloid malignancies. Pharmacogenetics 2002;12:605–11.10.1097/00008571-200211000-00004Suche in Google Scholar
94. Haas DW, Ribaudo HJ, Kim RB, Tierney C, Wilkinson GR, Gulick RM, et al. Pharmacogenetics of efavirenz and central nervous system side effects: an Adult AIDS Clinical Trials Group study. AIDS 2004;18:2391–400.Suche in Google Scholar
95. Zhang X, Tierney C, Albrecht M, Demeter LM, Morse G, DiFrancesco R, et al. Discordant associations between SLCO1B1 521T→C and plasma levels of ritonavir-boosted protease inhibitors in AIDS clinical trials group study A5146. Ther Drug Monit 2013;35:209–16.10.1097/FTD.0b013e318280d0adSuche in Google Scholar
96. Langaee TY, Gong Y, Yarandi HN, Katz DA, Cooper-DeHoff RM, Pepine CJ, et al. Association of CYP3A5 polymorphisms with hypertension and antihypertensive response to verapamil. Clin Pharmacol Ther 2007;81:386–91.10.1038/sj.clpt.6100090Suche in Google Scholar
97. Ball SE, Scatina J, Kao J, Ferron GM, Fruncillo R, Mayer P, et al. Population distribution and effects on drug metabolism of a genetic variant in the 5′ promoter region of CYP3A4. Clin Pharmacol Ther 1999;66:288–94.10.1016/S0009-9236(99)70037-8Suche in Google Scholar
98. Ribaudo HJ, Liu H, Schwab M, Schaeffeler E, Eichelbaum M, Motsinger-Reif AA, et al. Effect of CYP2B6, ABCB1, and CYP3A5 polymorphisms on efavirenz pharmacokinetics and treatment response: an AIDS Clinical Trials Group study. J Infect Dis 2010;202:717–22.10.1086/655470Suche in Google Scholar PubMed PubMed Central
99. Figueroa-Vallés N, Ortiz-Ortiz K. Cancer in Puerto Rico, 2004–2009. Puerto Rico Central Cancer Registry. 2012. Available at: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Cancer+in+Puerto+Rico+2004-2009#9.Suche in Google Scholar
100. Hecht JT, Ester A, Scott A, Wise CA, Iovannisci DM, Lammer EJ, et al. NAT2 variation and idiopathic talipes equinovarus (Clubfoot). Am J Med Genet 2007;143:2285–91.10.1002/ajmg.a.31927Suche in Google Scholar PubMed
101. McDonagh EM, Boukouvala S, Aklillu E, Hein DW, Altman RB, Klein TE. PharmGKB summary: very important pharmacogene information for N-acetyltransferase 2. Pharmacogenet Genomics 2014;24:409–25.10.1097/FPC.0000000000000062Suche in Google Scholar PubMed PubMed Central
102. Baumgartner KB, Schlierf TJ, Yang D, Doll MA, Hein DW. N-acetyltransferase 2 genotype modification of active cigarette smoking on breast cancer risk among Hispanic and non-Hispanic white women. Toxicol Sci 2009;112:211–20.10.1093/toxsci/kfp199Suche in Google Scholar PubMed PubMed Central
103. Lin HJ, Han CY, Lin BK, Hardy S. Slow acetylator mutations in the human polymorphic N-acetyltransferase gene in 786 Asians, blacks, Hispanics, and whites: application to metabolic epidemiology. Am J Hum Genet 1993;52:827–34.Suche in Google Scholar
104. Kelsey K, Spitz M, Zuo Z, JK W. Polymorphisms in the glutathione S-transferase class mu and theta genes interact and increase susceptibility to lung cancer in minority population (Texas, United States). Cancer Causes Control 1997;8:554–9.10.1023/A:1018434027502Suche in Google Scholar
105. Barbarino JM, Haidar CE, Klein TE, Altman RB. PharmGKB summary: very important pharmacogene information for UGT1A1. Pharmacogenet Genomics 2014;24:177–83.10.1097/FPC.0000000000000024Suche in Google Scholar PubMed PubMed Central
106. UGT Nomenclature Committee. UGT alleles nomenclature home page. 2005. Available at: http://www.ugtalleles.ulaval.ca. Cited June 5, 2014.Suche in Google Scholar
107. Li J, Menard V, Benish RL, Jurevic RJ, Guillemette C, Stoneking M, et al. Worldwide variation in human drug-metabolism enzyme genes CYP2B6 and UGT2B7: implications for HIV/AIDS treatment. Pharmacogenomics 2012;13:555–70.10.2217/pgs.11.160Suche in Google Scholar PubMed PubMed Central
108. Salinas AE, Wong MG. Glutathione S-transferases – a review. In: Atta-ur-Rahman, Craik DJ, Dax SL, Rees DC, editors. Current medicinal chemistry. Volume 6 I. Amsterdam: Bentham Science Publishers, 1999:279–309.10.2174/0929867306666220208213032Suche in Google Scholar
109. Woo MH, Shuster JJ, Chen C, Bash RO, Behm FG, Camitta B, et al. Glutathione S-transferase genotypes in children who develop treatment-related acute myeloid malignancies. Leukemia 2000;14:232–7.10.1038/sj.leu.2401660Suche in Google Scholar PubMed
110. Thorn CF, Ji Y, Weinshilboum RM, Altman RB, Klein TE. PharmGKB summary: very important pharmacogene information for GSTT1. Pharmacogenet Genomics 2012;22:646–51.10.1097/FPC.0b013e3283527c02Suche in Google Scholar PubMed PubMed Central
111. Montero R, Araujo A, Carranza P, Mejía-Loza V, Serrano L, Albores A, et al. Genotype frequencies of polymorphic GSTM1, GSTT1, and cytochrome P450 CYP1A1 in Mexicans. Hum Biol 2007;79:299–312.10.1353/hub.2007.0037Suche in Google Scholar PubMed
112. Johnson JA, Gong L, Whirl-Carrillo M, Gage BF, Scott SA, Stein CM, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin Pharmacol Ther 2011;90:625–9.10.1038/clpt.2011.185Suche in Google Scholar PubMed PubMed Central
113. Scott SA, Sangkuhl K, Gardner EE, Stein CM, Hulot J-S, Johnson J, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450-2C19 (CYP2C19) genotype and clopidogrel therapy. Clin Pharmacol Ther 2011;90:328–32.10.1038/clpt.2011.132Suche in Google Scholar PubMed PubMed Central
114. Crews KR, Gaedigk A, Dunnenberger HM, Leeder JS, Klein TE, Caudle KE, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450 2D6 genotype and codeine therapy: 2014 update. Clin Pharmacol Ther 2014;95:376–82.10.1038/clpt.2013.254Suche in Google Scholar PubMed PubMed Central
115. Relling MV, Gardner EE, Sandborn WJ, Schmiegelow K, Pui C-H, Yee SW, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing: 2013 update. Clin Pharmacol Ther 2013;93:324–5.10.1038/clpt.2013.4Suche in Google Scholar PubMed PubMed Central
116. Bermudez A. A proposal for an individualized pharmacogenetic-guided warfarin dosage regimen for Puerto Rican patients commencing anticoagulation therapy. J Pharm Pharmacoproteomics 2014;T1:1–11.Suche in Google Scholar
117. Scott SA, Martis S, Peter I, Kasai Y, Kornreich R, Desnick RJ. Identification of CYP2C19*4B: pharmacogenetic implications for drug metabolism including clopidogrel responsiveness. Pharm J 2012;12:297–305.10.1038/tpj.2011.5Suche in Google Scholar PubMed PubMed Central
118. Innocenti F, Liu W, Fackenthal D, Ramírez J, Ye X, Wu X, et al. SNP discovery and functional assessment of variation in the UDP-glucuronosyltransferase 2B7 (UGT2B7) gene. Pharmacogenet Genomics 2009;18:683–97.10.1097/FPC.0b013e3283037fe4Suche in Google Scholar PubMed PubMed Central
Supplemental Material
The online version of this article (DOI: 10.1515/dmdi-2014-0023) offers supplementary material, available to authorized users.
©2015 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Editorial
- Population pharmacogenetics and global health
- Review
- Clinical prospects of IGF-signaling system components study in ovarian cancer patients
- Reviews in Population Pharmacogenomics
- Pharmacogenetics of drug-metabolizing enzymes in US Hispanics
- Pharmacogenetics of drug-metabolizing enzymes in Italian populations
- Opinion Paper
- Is laboratory medicine ready for the era of personalized medicine? A survey addressed to laboratory directors of hospitals/academic schools of medicine in Europe
- Original Articles
- Gene-gene interaction of μ-opioid receptor and GluR5 kainate receptor subunit is associated with smoking behavior in a Greek population: presence of a dose allele effect
- In vitro assessment of CYP1A2 and 2C9 inhibition potential of Withania somnifera and Centella asiatica in human liver microsomes
Artikel in diesem Heft
- Frontmatter
- Editorial
- Population pharmacogenetics and global health
- Review
- Clinical prospects of IGF-signaling system components study in ovarian cancer patients
- Reviews in Population Pharmacogenomics
- Pharmacogenetics of drug-metabolizing enzymes in US Hispanics
- Pharmacogenetics of drug-metabolizing enzymes in Italian populations
- Opinion Paper
- Is laboratory medicine ready for the era of personalized medicine? A survey addressed to laboratory directors of hospitals/academic schools of medicine in Europe
- Original Articles
- Gene-gene interaction of μ-opioid receptor and GluR5 kainate receptor subunit is associated with smoking behavior in a Greek population: presence of a dose allele effect
- In vitro assessment of CYP1A2 and 2C9 inhibition potential of Withania somnifera and Centella asiatica in human liver microsomes