Abstract
A class of Boolean functions constructed from digital sequences of linear recurrences over the ring
Originally published in Diskretnaya Matematika (2023) 35, №1, 54–61 (in Russian).
References
[1] Lidl R., Niederreiter H., Finite Fields, Addison-Wesley Publ. Inc., 1983, 755 pp.Suche in Google Scholar
[2] Nechaev A. A., “Cycle types of linear substitutions over finite commutative rings”, Russian Acad. Sci. Sb. Math., 782 (1994), 283–311.10.1070/SM1994v078n02ABEH003470Suche in Google Scholar
[3] Bylkov D. N., Kamlovskii O. V., “Parameters of Boolean functions generated by the most significant bits of linear recurrent sequences”, Matematicheskie voprosy kriptografii, 34 (2012), 25–53 (in Russian).10.4213/mvk66Suche in Google Scholar
[4] Bylkov D. N., “Boolean functions generated by the most significant bits of linear recurrent sequences”, PDM. Prilozhenie, 2014, № 7, 59–60 (in Russian).Suche in Google Scholar
[5] Bugrov A. D., Kamlovskii O. V., “Parameters of a class of functions over a finite field”, Matematicheskie voprosy kriptografii, 94 (2018), 35–52 (in Russian).Suche in Google Scholar
[6] Solodovnikov V. I., “Bent functions from a finite abelian group into a finite abelian group”, Discrete Math. Appl., 122 (2002), 111–126.10.1515/dma-2002-0203Suche in Google Scholar
[7] Kamlovskiy O. V., “Estimating the number of solutions of systems of nonlinear equations with linear recurring arguments by the spectral method”, Discrete Math. Appl., 274 (2017), 199–211.10.1515/dma-2017-0022Suche in Google Scholar
[8] Kamlovskii O. V., “Exponential sums method for frequencies of most significant bit r-patterns in linear recurrent sequences over ℤ2n”, Matematicheskie voprosy kriptografii, 14 (2010), 33–62 (in Russian).Suche in Google Scholar
[9] Kamlovsky O. V., Kuzmin A. S., “Bounds for the number of occurrences of elements in a linear recurring sequence over a Galois ring”, Fundamentalnaya i prikladnaya matematika, 64 (2000), 1083–1094.Suche in Google Scholar
[10] Dictionary of cryptographic terms, eds. Pogorelov B. A., Sachkov V. N., M.: MCCME, 2006 (in Russian), 92 pp.Suche in Google Scholar
[11] Bylkov D. N., “A class of injective compressing maps on linear recurring sequences over a Galois ring”, Problems Inform. Transmission, 463 (2010), 245–252.10.1134/S003294601003004XSuche in Google Scholar
[12] Kamlovskii O. V., “Frequency characteristics of linear recurrence sequences over Galois rings”, Sb. Math., 2004 (2009), 499–519.10.1070/SM2009v200n04ABEH004006Suche in Google Scholar
[13] Logachev O. A., Salnikov A. A., Yashchenko V. V., Boolean functions in coding theory and cryptology, M.: MCCME, 2004 (in Russian), 470 pp.Suche in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Generation of n-quasigroups by proper families of functions
- Boolean functions constructed using digital sequences of linear recurrences
- On the sets of the propagation criterion for strict majority Boolean functions
- Branching processes in random environment with freezing
- Limit joint distribution of the statistics of «Monobit test», «Frequency Test within a Block» and «Binary Matrix Rank Test»
- On random mappings with restrictions on sizes of components
Artikel in diesem Heft
- Frontmatter
- Generation of n-quasigroups by proper families of functions
- Boolean functions constructed using digital sequences of linear recurrences
- On the sets of the propagation criterion for strict majority Boolean functions
- Branching processes in random environment with freezing
- Limit joint distribution of the statistics of «Monobit test», «Frequency Test within a Block» and «Binary Matrix Rank Test»
- On random mappings with restrictions on sizes of components