Startseite Adapted spectral-differential method for construction of differentially 4-uniform piecewise-linear permutations, orthomorphisms, and involutions of the field F2n
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Adapted spectral-differential method for construction of differentially 4-uniform piecewise-linear permutations, orthomorphisms, and involutions of the field F2n

  • Andrey V. Menyachikhin EMAIL logo
Veröffentlicht/Copyright: 12. Februar 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We propose a method to construct permutations of the field F2n with low value of the Δ-uniformity such that their restrictions to the cosets of the group F2n× by some of its subgroup H are linear. Using the proposed method, we construct a large number of new CCZ-nonequivalent differentially 4-uniform permutations, orthomorphisms, and involutions over the field F2n with n = 6, 8.


Originally published in Diskretnaya Matematika (2023) 35, №2, 42–77 (in Russian).


Acknowledgment

The author is grateful to A. E. Trishin for introduction in this field, to his advisor B. A. Pogorelov for his help and support in all aspects, and to D. A. Burov for valuable comments and interest in this study.

References

[1] Bugrov A. D., “Piecewise-affine permutations of finite fields”, Prikl. diskr. matem., 4:30 (2015), 5–23 (in Russian).10.17223/20710410/30/1Suche in Google Scholar

[2] Davydov S. A., Kruglov I. A., “A method of construction of differentially 4-uniform permutations over Vm for even m”, Discrete Math. Appl., 31:6 (2021), 383–388.10.1515/dma-2021-0033Suche in Google Scholar

[3] Cormen Th. H., Leiserson Ch. E., Rivest R. L., Stein C., Introduction to Algorithms, MIT Press & McGraw-Hill., 1990, 1312 pp.Suche in Google Scholar

[4] Pogorelov B. A., Pudovkina M. A., “Classes of piecewise-quasiaffine transformations on the generalized 2-group of quaternions”, Discrete Math. Appl., 33:5 (2023), 299–316.Suche in Google Scholar

[5] Pogorelov B. A., Pudovkina M. A., “Classes of piecewise quasiaffine transformations on dihedral, quasidihedral and modular maximal-cyclic 2-groups”, Discrete Math. Appl., 34:1 (2024), 15–27.Suche in Google Scholar

[6] Sachkov V. N., “Combinatorial properties of differentially 2-uniform substitutions”, Matematicheskie voprosy kriptografii, 6:1 (2015), 159–179.10.4213/mvk156Suche in Google Scholar

[7] Trishin A. E., “The nonlinearity index for a piecewise-linear substitution of the additive group of the field F2n Prikl. diskr. matem., 4:30 (2015), 32–42.10.17223/20710410/30/3Suche in Google Scholar

[8] Shannon C. E., Works on information theory and cybernetics, M: IL, 1963 (in Russian), 829 pp.Suche in Google Scholar

[9] Bell J., “Cyclotomic orthomorphisms of finite fields”, Discrete Applied Mathematics, 161 (2013), 294–300.10.1016/j.dam.2012.08.013Suche in Google Scholar

[10] Biham E., Shamir A., “Differential cryptanalysis of DES-like cryptosystems”, CRYPTO 1990, Lect. Notes Comput. Sci., 537, 1991, 2–21.10.1007/3-540-38424-3_1Suche in Google Scholar

[11] Bogdanov A., Knudsen L. R., Leander G., Paar C., Poschmann A., Robshaw M. J. B., Seurin Y., Vikkelsoe C., “PRESENT: An ultra-lightweight block cipher”, CHES 2007, Lect. Notes Comput. Sci., 4727, 2007, 450–466.10.1007/978-3-540-74735-2_31Suche in Google Scholar

[12] Bracken C., Leander G., “A highly nonlinear differentially 4 uniform power mapping that permutes fields of even degree”, Finite Fields Appl., 16:4 (2010), 231–242.10.1016/j.ffa.2010.03.001Suche in Google Scholar

[13] Bracken C., Tan C., Tan Y., “Binomial differentially 4-uniform permutations with high nonlinearity”, Finite Fields Appl., 18:3 (2012), 537–546.10.1016/j.ffa.2011.11.006Suche in Google Scholar

[14] Brison O.J., “On group-permutation polynomials”, Portug. Math., 50 (1993), 365–383.Suche in Google Scholar

[15] Burov D.A., Pogorelov B.A., “An attack on 6 rounds of Khazad”, Matematicheskie voprosy kriptografii, 7:2 (2016), 35–46.10.4213/mvk181Suche in Google Scholar

[16] Canteaut A., Duval S., Perrin L., “A generalisation of Dillon’s APN permutation with the best known differential and nonlinear properties for all fields of size 24k + 2”, IEEE Trans. Inf. Theory, 63:11 (2017), 7575–7591.10.1109/TIT.2017.2676807Suche in Google Scholar

[17] Carlet C., Boolean Functions for Cryptography and Coding Theory, Cambridge Univ. Press, 2020, 574 pp.10.1017/9781108606806Suche in Google Scholar

[18] Carlet C., “On known and new differentially uniform functions”, ACISP 2011, Lect. Notes Comput. Sci., 6812, 2011, 1–15.10.1007/978-3-642-22497-3_1Suche in Google Scholar

[19] Carlet C., “Open questions on nonlinearity and on APN functions”,WAIFI 2014, Lect. Notes Comput. Sci., 9061, 2015, 83–107.10.1007/978-3-319-16277-5_5Suche in Google Scholar

[20] Carlet C., Tang D., Tang X., Liao Q., “New construction of differentially 4-uniform bijections”, INSCRYPT 2013, Lect. Notes Comput. Sci., 8567, 2014, 22–38.10.1007/978-3-319-12087-4_2Suche in Google Scholar

[21] Chen X., Deng Y., Zhu M., Qu L., “An equivalent condition on the switching construction of differentially 4-uniform permutations on F22k from the inverse function”, Int. J. Computer Math., 94:6 (2017), 1252–1267.10.1080/00207160.2016.1167884Suche in Google Scholar

[22] Dobbertin H., “One-to-one highly nonlinear power functions on GF(2n)”, Appl. Algebra in Eng., Commun. Computing, 9:2 (1998), 139–152.10.1007/s002000050099Suche in Google Scholar

[23] De La Cruz Jimenez R.A., “Constructing 8-bit permutations, 8-bit involutions and 8-bit orthomorphisms with almost optimal cryptographic parameters”, Matematicheskie voprosy kriptografii, 12:3 (2021), 89–124.10.4213/mvk377Suche in Google Scholar

[24] Evans A., Orthomorphisms Graphs of Groups, Springer-Verlag, Berlin, 1992, 114 pp.Suche in Google Scholar

[25] Fear D.,Wanless I. M., “Existence results for cyclotomic orthomorphisms”, J. Algebr. Comb., 46 (2017), 1–14.10.1007/s10801-017-0740-zSuche in Google Scholar

[26] Fomin D.B., “New classes of 8-bit permutations based on butterfly structure”, Matematicheskie voprosy kriptografii, 10:2 (2019), 169–180.10.4213/mvk294Suche in Google Scholar

[27] Fu S., Feng X., “Involutory differentially 4-uniform permutations from known constructions”, Des., Codes Cryptogr., 87:1 (2018), 31–56.10.1007/s10623-018-0482-5Suche in Google Scholar

[28] Gold R., “Maximal recursive sequences with 3-valued recursive crosscorrelation functions”, IEEE Trans. Inf. Theory, 14 (1968), 154–156.10.1109/TIT.1968.1054106Suche in Google Scholar

[29] Kasami T., “The weight enumerators for several classes of subcodes of the second order binary Reed–Muller codes”, Inf. and Control, 18 (1971), 369–394.10.1016/S0019-9958(71)90473-6Suche in Google Scholar

[30] Leander G., Abdelraheem M.A., Alkhzaimi H., Zenner E., “A cryptanalysis of PRINT cipher: The invariant subspace attack”, EUROCRYPT 2011, Lect. Notes Comput. Sci., 6841, 2011, 206–221.10.1007/978-3-642-22792-9_12Suche in Google Scholar

[31] Li L., Wang M., “Constructing differentially 4-uniform permutations over F2m from quadratic APN permutations over F2m+1 Des., Codes Cryptogr., 72:2 (2014), 249–264.10.1007/s10623-012-9760-9Suche in Google Scholar

[32] Malyshev F.M., Trishin A.E., “Linear and differential cryptanalysis: Another viewpoint”, Matematicheskie voprosy kriptografii, 11:2 (2020), 83–98.10.4213/mvk323Suche in Google Scholar

[33] Matsui M., “Linear cryptanalysis method for DES cipher”, EUROCRYPT 1993, Lect. Notes Comput. Sci., 765, 1994, 386–397.10.1007/3-540-48285-7_33Suche in Google Scholar

[34] Matsumoto M., Nishimura T., “Mersenne Twister: A 623-dimensionally equidistributed uniform pseudo-random generator”, ACM Trans. Model. Computer Simul., 8 (1998), 8–30.10.1145/272991.272995Suche in Google Scholar

[35] McKay B.D., McLeod J.C., Wanless I.M., “The number of transversals in a Latin square”, Des., Codes Cryptogr., 40:3 (2006), 269–284.10.1007/s10623-006-0012-8Suche in Google Scholar

[36] Menyachikhin A.V., “Spectral-linear and spectral-differential methods for generating s-boxes having almost optimal cryptographic parameters”, Matematicheskie voprosy kriptografii, 8:2 (2017), 97–116.10.4213/mvk227Suche in Google Scholar

[37] Menyachikhin A.V., “The change in linear and differential characteristics of substitution after the multiplication by transposition”, Matematicheskie voprosy kriptografii, 11:2 (2020), 111–123.10.4213/mvk325Suche in Google Scholar

[38] Niederreiter H., Winterhof A., “Cyclotomic R-orthomorphisms of finite fields”, Discrete Mathematics, 295 (2005), 161–171.10.1016/j.disc.2004.12.011Suche in Google Scholar

[39] Nyberg K., “Differentially uniform mappings for cryptography”, EUROCRYPT 1993, Lect. Notes Comput. Sci., 765, 1994, 55–64.10.1007/3-540-48285-7_6Suche in Google Scholar

[40] Park Y. H., Lee J. B., “Permutation polynomials and group permutation polynomials”, Bull. Australian Math. Soc., 63:1 (2001), 67–74.10.1017/S0004972700019110Suche in Google Scholar

[41] Peng J., Tan C. H., “New explicit constructions of differentially 4-uniform permutations via special partitions of F22k ”, Finite Fields Appl., 40 (2016), 73–89.10.1016/j.ffa.2016.03.003Suche in Google Scholar

[42] Perrin L., Udovenko A., Biryukov A., “Cryptanalysis of a theorem: decomposing the only known solution to the big APN problem”, CRYPTO 2016, Lect. Notes Comput. Sci., 9815, 2016, 93–122.10.1007/978-3-662-53008-5_4Suche in Google Scholar

[43] Shimanski N.L., Orthomorphisms of Boolean Groups. PhD thesis, Portland State Univ., 2016, 91 pp.Suche in Google Scholar

[44] Qu L., Tan Y., Li C., Gong G., “More constructions of differentially 4-uniform permutations on F2k ”, Des., Codes Cryptogr., 78:2 (2016), 391–408.Suche in Google Scholar

[45] Qu L., Tan Y., Tan C. H., Li C., “Constructing differentially 4-uniform permutations over F22k via the switching method”, IEEE Trans. Inf.Theory, 59:7 (2013), 4675–4686.10.1109/TIT.2013.2252420Suche in Google Scholar

[46] Tang D., Carlet C., Tang X., “Differentially 4-uniform bijections by permuting the inverse function”, Des., Codes Cryptogr., 77:1 (2015), 117–141.10.1007/s10623-014-9992-ySuche in Google Scholar

[47] Wan D., Lidl R., “Permutation polynomials of the form xr f (xq−1 / d) and their group structure”, Monatsh. Math., 112 (1991), 149– 163.10.1007/BF01525801Suche in Google Scholar

[48] Wang Q., “Cyclotomic mapping permutation polynomials over finite fields”, SSC 2007, Lect. Notes Comput. Sci., 4893, 2007, 119–128.10.1007/978-3-540-77404-4_11Suche in Google Scholar

[49] Wanless I., “Transversals in Latin squares”, Quasigr. Relat. Syst., 15:1 (2007), 169–190.Suche in Google Scholar

[50] Wells C., “Groups of permutation polynomials”, Monatsh. Math., 71 (1967), 248–262.10.1007/BF01298331Suche in Google Scholar

[51] Yu Y.,Wang M., Li Y., “Constructing low differential uniformity functions from known ones”, Chinese J. Electronics, 22:3 (2013), 495–499.Suche in Google Scholar

[52] Zha Z., Hu L., Sun S., “Constructing new differentially 4-uniform permutations from the inverse function”, Finite Fields Appl., 25 (2014), 64–78.10.1016/j.ffa.2013.08.003Suche in Google Scholar

Applications

Examples of differentially 4-uniform piecewise-linear permutations constructed via the adapted spectral-differential method

Received: 2023-01-11
Published Online: 2025-02-12
Published in Print: 2025-02-25

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2025-0003/html?lang=de
Button zum nach oben scrollen