Startseite Hadamard square of linear codes and the generalized minimal distance of Reed–Muller code of order 2
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Hadamard square of linear codes and the generalized minimal distance of Reed–Muller code of order 2

  • Ivan V. Chizhov EMAIL logo
Veröffentlicht/Copyright: 12. Februar 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We propose a new technique for dimensional analysis of the Hadamard (Schur) square of an error-correcting linear code. This is usually achieved by a representation of the Hadamard square as an image of some linear operator defined on the set of quadratic forms. A link between the dimension of the Hadamard square the rank of some submatrix of the generating matrix of the code containing the set of vector values of quadratic forms is established. So the dimensional analysis of the Hadamard square can be carried out with the extensive code-based machinery rather than via the approach with estimation of the number of joint zeros of the set of quadratic forms. As a result and we establish a nonasymptotic estimate for the probability that the Hadamard square of a random linear code fills the entire space. This estimate can be used for cryptographic analysis of post-quantum code-based cryptosystems.


Originally published in Diskretnaya Matematika (2023) 35, №1, 128–152 (in Russian).


References

[1] Pellikaan R., “On decoding by error location and dependent sets of error positions”, Discrete Mathematics, 106–107 (1992), 369–381.10.1016/0012-365X(92)90567-YSuche in Google Scholar

[2] Chen H., Cramer R., “Algebraic geometric secret sharing schemes and secure multi-party computations over small fields”, CRYPTO 2006, Lect. Notes Comput. Sci., 4117, 2006, 521–536.10.1007/11818175_31Suche in Google Scholar

[3] M. A. Borodin, I. V. Chizhov, “Effective attack on the McEliece cryptosystem based on Reed–Muller codes”, Discrete Math. Appl., 24:5 (2014), 273–280.10.1515/dma-2014-0024Suche in Google Scholar

[4] Wieschebrink C., “Cryptanalysis of the Niederreiter public key scheme based on GRS subcodes”, PQCrypto 2010, Lect. Notes Comput. Sci., 6061, 2010, 61–72.10.1007/978-3-642-12929-2_5Suche in Google Scholar

[5] Couvreur C., Gaborit P., Gauthier-Umaña V., Otmani A., Tillich J.-P., “Distinguisher-based attacks on public-key cryptosystems using Reed–Solomon codes”, Des. Codes Cryptogr., 73:2 (2014), 641–666.10.1007/s10623-014-9967-zSuche in Google Scholar

[6] Couvreur A., Márquez-Corbella I., Pellikaan R., “Cryptanalysis of public-key cryptosystems that use subcodes of algebraic geometry codes”, Coding Theory and Applications, CIM Ser. in Math. Sci., 3, Springer, Cham, 2015, 133–140.10.1007/978-3-319-17296-5_13Suche in Google Scholar

[7] Couvreur A., Otmani A., Tillich J.-P., “Polynomial time attack on wild McEliece over quadratic extensions”, IEEE Trans. Inf. Theory, 63:1 (2017), 404–427.10.1109/TIT.2016.2574841Suche in Google Scholar

[8] Couvreur A., Otmani A., Tillich J.-P., Gauthier-Umaña V., “A polynomial-time attack on the BBCRS scheme”, PKC 2015, Lect. Notes Comput. Sci., 9020, 2015, 175–193.10.1007/978-3-662-46447-2_8Suche in Google Scholar

[9] Otmani A., Kalachi H. T., “Square code attack on a modified Sidelnikov cryptosystem”, C2SI 2015, Lect. Notes Comput. Sci., 9084, 2015, 173–183.10.1007/978-3-319-18681-8_14Suche in Google Scholar

[10] Faugére J., Gauthier-Umaña V., Otmani A., Perret L., Tillich J.-P., “A distinguisher for high-rate McEliece cryptosystems”, IEEE Trans. Inf. Theory, 59:10 (2013), 6830–6844.10.1109/TIT.2013.2272036Suche in Google Scholar

[11] Cascudo I., Cramer R., Mirandola D., Zémor G., “Squares of random linear codes”, IEEE Trans. Inf. Theory, 61:3 (2015), 1159–1173.10.1109/TIT.2015.2393251Suche in Google Scholar

[12] Bardet M., Bertin M., Couvreur A., Otmani A., “Practical algebraic attack on DAGS”, CBC 2019, Lect. Notes Comput. Sci., 11666, 2019, 86–101.10.1007/978-3-030-25922-8_5Suche in Google Scholar

[13] MacWilliams, F., Sloane, N.: The Theory of Error-Correcting Codes. North Holland (1997)Suche in Google Scholar

[14] Hall J. I., Notes on Coding Theory. Chapter 3: Linear Codes, https://users.math.msu.edu/users/halljo/classes/CODENOTES/Linear.pdf 2010.Suche in Google Scholar

[15] Heijnen P., Pellikaan R., “Generalized Hamming weights of q-ary Reed-Muller codes”, IEEE Trans. Inf. Theory, 44:1 (1998), 181–196.10.1109/18.651015Suche in Google Scholar

[16] Randriambololona H., “On products and powers of linear codes under componentwise multiplication”, AGCT 2013, Contemp. Math., 637, 2015, 3–78.10.1090/conm/637/12749Suche in Google Scholar

[17] Wei V. K., “Generalized Hamming weights for linear codes”, IEEE Trans. Inf. Theory, 37:5 (1991), 1412–1418.10.1109/18.133259Suche in Google Scholar

[18] Delsarte P., Goethals J. M., Mac Williams F. J., “On generalized Reed–Muller codes and their relatives”, Inf. Control, 16:5 (1970), 403–442.10.1016/S0019-9958(70)90214-7Suche in Google Scholar

[19] Abbe E., Shpilka A., Wigderson A., “Reed–Muller codes for random erasures and errors”, STOC’15: Proc. 47th Ann. ACM Symp. Theory Comput., 2015, 297–306.10.1145/2746539.2746575Suche in Google Scholar

Received: 2022-09-30
Published Online: 2025-02-12
Published in Print: 2025-02-25

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2025-0002/html
Button zum nach oben scrollen