Startseite Boolean analogues of the Pascal triangle with maximal possible number of ones
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Boolean analogues of the Pascal triangle with maximal possible number of ones

  • Fedor M. Malyshev EMAIL logo
Veröffentlicht/Copyright: 13. Oktober 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The aim of the paper is to find the maximal possible number ξ of units in Boolean triangular array Ts formed by s(s+1)2 elements of the field GF(2) defined by the top row of s elements. Each element of each row except the top one is the sum (as in the Pascal’s triangle) of two elements of the above row. It is proved that ξ ⩽ ⌈ s(s+1)3 ⌉ and this value is attained only on triangles having the upper row as the Fibonacci series mod 2.


Originally published in Diskretnaya Matematika (2020) 32,№1, 51–59 (in Russian).


References

[1] Malyshev F. M., “Bases of integers under the multiplace shift operations”, Matematicheskie voprosy kriptografii, 2:1 (2011), 29-74 (in Russian).10.4213/mvk25Suche in Google Scholar

[2] Malyshev F. M., “Bases of recurrent sequences”, Chebyshevskiy sbornik, 16:2 (2015), 155-185 (in Russian).Suche in Google Scholar

[3] Wolfram S., Cellular Automaton Supercomputing. In High-Speed Computing, University of Illinois Press, 1988.Suche in Google Scholar

[4] Malyshev F. M., Kutyreva E. V., “On the distribution of the number of ones in a Boolean Pascal’s triangle”, Discrete Math. Appl, 16:3 (2006), 271-279.10.1515/156939206777970435Suche in Google Scholar

[5] Malyshev F.M., “Distribution of the extreme values of the number of ones in Boolean analogues of the Pascal triangle”, Discrete Math. Appl., 27:3 (2017), 149-176.10.1515/dma-2017-0019Suche in Google Scholar

Received: 2019-12-19
Published Online: 2021-10-13
Published in Print: 2021-10-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2021-0029/pdf?lang=de
Button zum nach oben scrollen