Startseite On some implicitly precomplete classes of monotone functions in Pk
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On some implicitly precomplete classes of monotone functions in Pk

  • Mikhail V. Starostin EMAIL logo
Veröffentlicht/Copyright: 9. Februar 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The paper is concerned with the completeness problem in implicit expressibility in a multi-valued logics Pk. For each k ≥ 2 and any nontrivial order relation on the set {0, 1, …, k − 1} we find two implicitly precomplete classes of functions which are monotone with respect to this order


Note: Originally published in Diskretnaya Matematika (2018) 30, №4, 106–114 (in Russian).


References

[1] Kuznetsov A. V., “On the means for detecting irreducibility or inexpressibility”, Logicheskiy vyvod, 1979, 5–33 (in Russian).Suche in Google Scholar

[2] Kasim-ZadeO.M., “On implicit expressibility in two-valued logic and cryptoisomorphisms of two-element algebras”, Doklady RAN, 348 (1996), 299–301 (in Russian).Suche in Google Scholar

[3] Kasim-Zade O.M., “On a measure of complexity of implicit and parametric representations”, Matem. voprosy kibernetiki, 6 (1996), 133–189 (in Russian).10.1007/BF01262929Suche in Google Scholar

[4] Starostin M. V., “Implicitly precomplete classes and implicit completeness criterion in the three-valued logic”, Moscow Univ. Math. Bulletin, 73:2, 82–84.10.3103/S0027132218020067Suche in Google Scholar

[5] Orekhova E. A., “On a criterion of implicit completeness in three-valued logic”, Matem. voprosy kibernetiki, 12 (2003), 27–74 (in Russian).Suche in Google Scholar

[6] Kasim-Zade O. M., “Implicit completeness in the k-valued logic”, Moscow Univ. Math. Bulletin, 62:3, 90–94.10.3103/S0027132207030023Suche in Google Scholar

[7] Orekhova E. A., “On a criterion of implicit completeness in k-valued logic”, Matem. voprosy kibernetiki, 11 (2002), 77–90 (in Russian).Suche in Google Scholar

[8] Burle G.A., “Classes of k-valued logic containing all functions of one variable”, Diskretnyy analiz, 10 (1967), 3–7 (in Russian).Suche in Google Scholar

[9] Cohn P. M, Universal Algebra, Harper & Row, New York, 1965.Suche in Google Scholar

[10] Kuznetsov A. V., “Algebra of logic and its generalizations”, Mathematics in the USSR for forty years. V. I, M.: Fizmatlit, 102–115 (in Russian).Suche in Google Scholar

[11] Bodnarchuk V.G., Kaluzhnin L.A., Kotov V.N., Romov B.A., “Galois theory for Post algebras”, KIbernetika, 5 (1969), 1–9 (in Russian).10.1007/BF01267873Suche in Google Scholar

[12] Tolstova Yu.N., “On the modeling of k-valued logic in k-valued (k > l)”, Problemy kibernetiki, 18 (1967), 67–82 (in Russian).Suche in Google Scholar

[13] Lau D., Function Algebras on Finite Sets, Springer, Heidelberg, 2006, 668 pp.Suche in Google Scholar

[14] Korobkov V. K., Reznik T. L., “On some algorithms of the monotone functions calculation in an algebra of logic”, Doklady Akademii Nauk, 147 (1962), 1022–1025 (in Russian).Suche in Google Scholar

[15] Birkhoff G., Lattice Theory, Providence: AMS, 1967.Suche in Google Scholar

[16] Daniľchenko A. F., “Parametric expressibility of functions of three-valued logic”, Algebra and Logic, 16:4 (1977), 266–280.10.1007/BF01669278Suche in Google Scholar

[17] Orekhova E. A., “On the criterion of implicit Schaefferism in three-valued logic”, J. Appl. Industr. Math. Ser. 1, 10№3 (2003), 82–105 (in Russian).Suche in Google Scholar

Received: 2018-06-01
Published Online: 2020-02-09
Published in Print: 2020-02-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2020-0005/html?lang=de
Button zum nach oben scrollen