Startseite The generalized complexity of linear Boolean functions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The generalized complexity of linear Boolean functions

  • Nikolay P. Redkin EMAIL logo
Veröffentlicht/Copyright: 9. Februar 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We study generalized (in terms of bases) complexity of implementation of linear Boolean functions by Boolean circuits in arbitrary functionally complete bases; the complexity of a circuit is defined as the number of gates. Let L*(n) be the minimal number of gates sufficient for implementation of an arbitrary linear Boolean function of n variables in an arbitrary functionally complete basis. We show that L*(0) = L*(1) = 3 and L*(n) = 7(n – 1) for any natural n ≥ 2.


Originally published in Diskretnaya Matematika (2018) 30, №4, 89–96 (in Russian).

Funding

Research was supported by Russian Foundation for Basic Research (project 18.01.00337 “Problems of synthesis, complexity and reliability in theory of control systems”).


References

[1] Lupanov O. B., Asymptotic complexity estimates of control systems, MSU Publ., Moscow, 1984 (in Russian), 138 pp.Suche in Google Scholar

[2] Redkin N. P., “A generalization of Shannon function”, Discrete Math. Appl., 28:5 (2018), 309–318.10.1515/dma-2018-0027Suche in Google Scholar

[3] Yablonsky S.V., Introduction to Discrete Mathematics, Vysshaya shkola, Moscow, 2003 (in Russian), 384 pp.Suche in Google Scholar

[4] Redkin N. P., “The proof of minimality of some circuits of functional elements”, Problemy kibernetiki, 1970,№23, 83–101 (in Russian).Suche in Google Scholar

[5] Redkin N. P., “On the minimal implementation of a linear function by a circuit of functional elements”, Kibernetika, 1971, №6, 31.38 (in Russian).10.1007/BF01068820Suche in Google Scholar

[6] Shkrebela I. S., “On complexity of realisation of linear Boolean functions by circuits of functional elements over the basis {xy, x}”, Discrete Math. Appl., 13:5 (2003), 483–496.10.1163/156939203322694754Suche in Google Scholar

[7] Kombarov Yu. A., “The minimal circuits for linear Boolean functions”, Moscow University Mechanics Bulletin, 66:6 (2011), 260–263.10.3103/S0027132211060076Suche in Google Scholar

[8] Kombarov Yu. A., “On minimal implementations of linear boolean functions”, J. Appl. Industr. Math., 19:3 (2012), 39–57.Suche in Google Scholar

[9] Kombarov Yu. A., “On minimal circuits for linear functions over some bases”, Discrete Math. Appl., 23:1 (2013), 39–51.10.1515/dma-2013-002Suche in Google Scholar

[10] Kombarov Yu. A., “Complexity of realization of a linear Boolean function in Sheffer’fs basis”,Moscow Univ.Math. Bull., 68:2, 114–117.10.3103/S0027132213020083Suche in Google Scholar

[11] Kombarov Yu. A., “On minimal circuts in Sheffer basis for linear Boolean functions”, J. Appl. Industr. Math., 20:4 (2013), 65–87 (in Russian).Suche in Google Scholar

[12] Redkin N. P., “On the complete fault detection tests for functional element circuits”, Matematicheskie voprosy kibernetiki, 1989,№2, 198–222 (in Russian).Suche in Google Scholar

Received: 2018-04-03
Published Online: 2020-02-09
Published in Print: 2020-02-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2020-0004/html
Button zum nach oben scrollen